Skip to content
Snippets Groups Projects
Commit eb82a9c7 authored by Ralf Jung's avatar Ralf Jung
Browse files

prove frame-preservnig updates for global CMRA

parent 5b3865a0
No related branches found
No related tags found
No related merge requests found
...@@ -223,6 +223,19 @@ Proof. ...@@ -223,6 +223,19 @@ Proof.
rewrite !cmra_update_updateP; eauto using map_insert_updateP with congruence. rewrite !cmra_update_updateP; eauto using map_insert_updateP with congruence.
Qed. Qed.
Lemma map_singleton_updateP (P : A Prop) (Q : gmap K A Prop) i x :
x ~~>: P ( y, P y Q {[ i y ]}) {[ i x ]} ~~>: Q.
Proof. apply map_insert_updateP. Qed.
Lemma map_singleton_updateP' (P : A Prop) i x :
x ~~>: P {[ i x ]} ~~>: λ m', y, m' = {[ i y ]} P y.
Proof. eauto using map_singleton_updateP. Qed.
Lemma map_singleton_update i (x y : A) : x ~~> y {[ i x ]} ~~> {[ i y ]}.
Proof.
rewrite !cmra_update_updateP=>?. eapply map_singleton_updateP; first eassumption.
by move=>? ->.
Qed.
Context `{Fresh K (gset K), !FreshSpec K (gset K)}. Context `{Fresh K (gset K), !FreshSpec K (gset K)}.
Lemma map_updateP_alloc (Q : gmap K A Prop) m x : Lemma map_updateP_alloc (Q : gmap K A Prop) m x :
x ( i, m !! i = None Q (<[i:=x]>m)) m ~~>: Q. x ( i, m !! i = None Q (<[i:=x]>m)) m ~~>: Q.
......
...@@ -8,23 +8,33 @@ Definition globalC (Σ : gid → iFunctor) : iFunctor := ...@@ -8,23 +8,33 @@ Definition globalC (Σ : gid → iFunctor) : iFunctor :=
Class InG Λ (Σ : gid iFunctor) (i : gid) (A : cmraT) := Class InG Λ (Σ : gid iFunctor) (i : gid) (A : cmraT) :=
inG : A = Σ i (laterC (iPreProp Λ (globalC Σ))). inG : A = Σ i (laterC (iPreProp Λ (globalC Σ))).
Definition to_Σ {Λ} {Σ : gid iFunctor} (i : gid)
`{!InG Λ Σ i A} (a : A) : Σ i (laterC (iPreProp Λ (globalC Σ))) :=
eq_rect A id a _ inG.
Definition to_globalC {Λ} {Σ : gid iFunctor}
(i : gid) (γ : gid) `{!InG Λ Σ i A} (a : A) : iGst Λ (globalC Σ) :=
iprod_singleton i {[ γ to_Σ _ a ]}.
Definition own {Λ} {Σ : gid iFunctor}
(i : gid) `{!InG Λ Σ i A} (γ : gid) (a : A) : iProp Λ (globalC Σ) :=
ownG (to_globalC i γ a).
Section global. Section global.
Context {Λ : language} {Σ : gid iFunctor} (i : gid) `{!InG Λ Σ i A}. Context {Λ : language} {Σ : gid iFunctor} (i : gid) `{!InG Λ Σ i A}.
Implicit Types a : A. Implicit Types a : A.
(* Proeprties of to_globalC *) Definition to_Σ (a : A) : Σ i (laterC (iPreProp Λ (globalC Σ))) :=
eq_rect A id a _ inG.
Definition to_globalC (γ : gid) `{!InG Λ Σ i A} (a : A) : iGst Λ (globalC Σ) :=
iprod_singleton i {[ γ to_Σ a ]}.
Definition own (γ : gid) (a : A) : iProp Λ (globalC Σ) :=
ownG (to_globalC γ a).
Definition from_Σ (b : Σ i (laterC (iPreProp Λ (globalC Σ)))) : A :=
eq_rect (Σ i _) id b _ (Logic.eq_sym inG).
Definition P_to_Σ (P : A Prop) (b : Σ i (laterC (iPreProp Λ (globalC Σ)))) : Prop
:= P (from_Σ b).
(* Properties of the transport. *)
Lemma to_from_Σ b :
to_Σ (from_Σ b) = b.
Proof.
rewrite /to_Σ /from_Σ. by destruct inG.
Qed.
(* Properties of to_globalC *)
Lemma globalC_op γ a1 a2 : Lemma globalC_op γ a1 a2 :
to_globalC i γ (a1 a2) to_globalC i γ a1 to_globalC i γ a2. to_globalC γ (a1 a2) to_globalC γ a1 to_globalC γ a2.
Proof. Proof.
rewrite /to_globalC iprod_op_singleton map_op_singleton. rewrite /to_globalC iprod_op_singleton map_op_singleton.
apply iprod_singleton_proper, (fin_maps.singleton_proper (M:=gmap _)). apply iprod_singleton_proper, (fin_maps.singleton_proper (M:=gmap _)).
...@@ -32,7 +42,7 @@ Proof. ...@@ -32,7 +42,7 @@ Proof.
Qed. Qed.
Lemma globalC_validN n γ a : Lemma globalC_validN n γ a :
{n} (to_globalC i γ a) <-> {n} a. {n} (to_globalC γ a) <-> {n} a.
Proof. Proof.
rewrite /to_globalC. rewrite /to_globalC.
rewrite -iprod_validN_singleton -map_validN_singleton. rewrite -iprod_validN_singleton -map_validN_singleton.
...@@ -40,7 +50,7 @@ Proof. ...@@ -40,7 +50,7 @@ Proof.
Qed. Qed.
Lemma globalC_unit γ a : Lemma globalC_unit γ a :
unit (to_globalC i γ a) to_globalC i γ (unit a). unit (to_globalC γ a) to_globalC γ (unit a).
Proof. Proof.
rewrite /to_globalC. rewrite /to_globalC.
rewrite iprod_unit_singleton map_unit_singleton. rewrite iprod_unit_singleton map_unit_singleton.
...@@ -48,57 +58,92 @@ Proof. ...@@ -48,57 +58,92 @@ Proof.
by rewrite /to_Σ; destruct inG. by rewrite /to_Σ; destruct inG.
Qed. Qed.
Global Instance globalC_timeless γ m : Timeless m Timeless (to_globalC i γ m). Global Instance globalC_timeless γ m : Timeless m Timeless (to_globalC γ m).
Proof. Proof.
rewrite /to_globalC => ?. rewrite /to_globalC => ?.
apply iprod_singleton_timeless, map_singleton_timeless. apply iprod_singleton_timeless, map_singleton_timeless.
by rewrite /to_Σ; destruct inG. by rewrite /to_Σ; destruct inG.
Qed. Qed.
(* Properties of the lifted frame-preserving updates *)
Lemma update_to_Σ a P :
a ~~>: P to_Σ a ~~>: P_to_Σ P.
Proof.
move=>Hu gf n Hf. destruct (Hu (from_Σ gf) n) as [a' Ha'].
{ move: Hf. rewrite /to_Σ /from_Σ. by destruct inG. }
exists (to_Σ a'). move:Hf Ha'.
rewrite /P_to_Σ /to_Σ /from_Σ. destruct inG. done.
Qed.
(* Properties of own *) (* Properties of own *)
Global Instance own_ne γ n : Proper (dist n ==> dist n) (own i γ). Global Instance own_ne γ n : Proper (dist n ==> dist n) (own γ).
Proof. Proof.
intros m m' Hm; apply ownG_ne, iprod_singleton_ne, singleton_ne. intros m m' Hm; apply ownG_ne, iprod_singleton_ne, singleton_ne.
by rewrite /to_globalC /to_Σ; destruct inG. by rewrite /to_globalC /to_Σ; destruct inG.
Qed. Qed.
Global Instance own_proper γ : Proper (() ==> ()) (own i γ) := ne_proper _. Global Instance own_proper γ : Proper (() ==> ()) (own γ) := ne_proper _.
Lemma own_op γ a1 a2 : own i γ (a1 a2) (own i γ a1 own i γ a2)%I. Lemma own_op γ a1 a2 : own γ (a1 a2) (own γ a1 own γ a2)%I.
Proof. rewrite /own -ownG_op. apply ownG_proper, globalC_op. Qed. Proof. rewrite /own -ownG_op. apply ownG_proper, globalC_op. Qed.
(* TODO: This also holds if we just have ✓a at the current step-idx, as Iris (* TODO: This also holds if we just have ✓a at the current step-idx, as Iris
assertion. However, the map_updateP_alloc does not suffice to show this. *) assertion. However, the map_updateP_alloc does not suffice to show this. *)
Lemma own_alloc E a : Lemma own_alloc E a :
a True pvs E E ( γ, own i γ a). a True pvs E E ( γ, own γ a).
Proof. Proof.
intros Hm. set (P m := γ, m = to_globalC i γ a). intros Ha. set (P m := γ, m = to_globalC γ a).
rewrite -(pvs_mono _ _ ( m, P m ownG m)%I). rewrite -(pvs_mono _ _ ( m, P m ownG m)%I).
- rewrite -pvs_updateP_empty //; []. - rewrite -pvs_ownG_updateP_empty //; [].
subst P. eapply (iprod_singleton_updateP_empty i). subst P. eapply (iprod_singleton_updateP_empty i).
+ eapply map_updateP_alloc' with (x:=to_Σ i a). + apply map_updateP_alloc' with (x:=to_Σ a).
by rewrite /to_Σ; destruct inG. by rewrite /to_Σ; destruct inG.
+ simpl. move=>? [γ [-> ?]]. exists γ. done. + simpl. move=>? [γ [-> ?]]. exists γ. done.
- apply exist_elim=>m. apply const_elim_l. - apply exist_elim=>m. apply const_elim_l=>-[p ->] {P}.
move=>[p ->] {P}. by rewrite -(exist_intro p). by rewrite -(exist_intro p).
Qed. Qed.
Lemma always_own_unit γ m : ( own i γ (unit m))%I own i γ (unit m). Lemma always_own_unit γ a : ( own γ (unit a))%I own γ (unit a).
Proof. rewrite /own -globalC_unit. by apply always_ownG_unit. Qed. Proof. rewrite /own -globalC_unit. by apply always_ownG_unit. Qed.
Lemma own_valid γ m : (own i γ m) ( m). Lemma own_valid γ a : (own γ a) ( a).
Proof. Proof.
rewrite /own ownG_valid. apply uPred.valid_mono=>n. rewrite /own ownG_valid. apply uPred.valid_mono=>n.
by apply globalC_validN. by apply globalC_validN.
Qed. Qed.
Lemma own_valid_r' γ m : (own i γ m) (own i γ m m). Lemma own_valid_r' γ a : (own γ a) (own γ a a).
Proof. apply (uPred.always_entails_r' _ _), own_valid. Qed. Proof. apply (uPred.always_entails_r' _ _), own_valid. Qed.
Global Instance ownG_timeless γ m : Timeless m TimelessP (own i γ m). Global Instance ownG_timeless γ a : Timeless a TimelessP (own γ a).
Proof. Proof.
intros. apply ownG_timeless. apply _. intros. apply ownG_timeless. apply _.
Qed. Qed.
Lemma pvs_updateP E γ a P :
a ~~>: P own γ a pvs E E ( a', P a' own γ a').
Proof.
intros Ha. set (P' m := a', P a' m = to_globalC γ a').
rewrite -(pvs_mono _ _ ( m, P' m ownG m)%I).
- rewrite -pvs_ownG_updateP; first by rewrite /own.
rewrite /to_globalC. eapply iprod_singleton_updateP.
+ (* FIXME RJ: I tried apply... with instead of instantiate, that
does not work. *)
apply map_singleton_updateP'. instantiate (1:=P_to_Σ P).
by apply update_to_Σ.
+ simpl. move=>? [y [-> HP]]. exists (from_Σ y). split.
* move: HP. rewrite /P_to_Σ /from_Σ. by destruct inG.
* clear HP. rewrite /to_globalC to_from_Σ; done.
- apply exist_elim=>m. apply const_elim_l=>-[a' [HP ->]].
rewrite -(exist_intro a'). apply and_intro; last done.
by apply const_intro.
Qed.
Lemma pvs_update E γ a a' : a ~~> a' own γ a pvs E E (own γ a').
Proof.
intros; rewrite (pvs_updateP E _ _ (a' =)); last by apply cmra_update_updateP.
by apply pvs_mono, uPred.exist_elim=> m''; apply uPred.const_elim_l=> ->.
Qed.
End global. End global.
...@@ -97,7 +97,7 @@ Proof. ...@@ -97,7 +97,7 @@ Proof.
* by rewrite -(left_id_L () Ef). * by rewrite -(left_id_L () Ef).
* apply uPred_weaken with r n; auto. * apply uPred_weaken with r n; auto.
Qed. Qed.
Lemma pvs_updateP E m (P : iGst Λ Σ Prop) : Lemma pvs_ownG_updateP E m (P : iGst Λ Σ Prop) :
m ~~>: P ownG m pvs E E ( m', P m' ownG m'). m ~~>: P ownG m pvs E E ( m', P m' ownG m').
Proof. Proof.
intros Hup%option_updateP' r [|n] ? Hinv%ownG_spec rf [|k] Ef σ ???; try lia. intros Hup%option_updateP' r [|n] ? Hinv%ownG_spec rf [|k] Ef σ ???; try lia.
...@@ -105,7 +105,7 @@ Proof. ...@@ -105,7 +105,7 @@ Proof.
{ apply cmra_includedN_le with (S n); auto. } { apply cmra_includedN_le with (S n); auto. }
by exists (update_gst m' r); split; [exists m'; split; [|apply ownG_spec]|]. by exists (update_gst m' r); split; [exists m'; split; [|apply ownG_spec]|].
Qed. Qed.
Lemma pvs_updateP_empty `{Empty (iGst Λ Σ), !CMRAIdentity (iGst Λ Σ)} Lemma pvs_ownG_updateP_empty `{Empty (iGst Λ Σ), !CMRAIdentity (iGst Λ Σ)}
E (P : iGst Λ Σ Prop) : E (P : iGst Λ Σ Prop) :
~~>: P True pvs E E ( m', P m' ownG m'). ~~>: P True pvs E E ( m', P m' ownG m').
Proof. Proof.
...@@ -148,9 +148,9 @@ Lemma pvs_mask_weaken E1 E2 P : E1 ⊆ E2 → pvs E1 E1 P ⊑ pvs E2 E2 P. ...@@ -148,9 +148,9 @@ Lemma pvs_mask_weaken E1 E2 P : E1 ⊆ E2 → pvs E1 E1 P ⊑ pvs E2 E2 P.
Proof. Proof.
intros; rewrite (union_difference_L E1 E2) //; apply pvs_mask_frame; auto. intros; rewrite (union_difference_L E1 E2) //; apply pvs_mask_frame; auto.
Qed. Qed.
Lemma pvs_update E m m' : m ~~> m' ownG m pvs E E (ownG m'). Lemma pvs_ownG_update E m m' : m ~~> m' ownG m pvs E E (ownG m').
Proof. Proof.
intros; rewrite (pvs_updateP E _ (m' =)); last by apply cmra_update_updateP. intros; rewrite (pvs_ownG_updateP E _ (m' =)); last by apply cmra_update_updateP.
by apply pvs_mono, uPred.exist_elim=> m''; apply uPred.const_elim_l=> ->. by apply pvs_mono, uPred.exist_elim=> m''; apply uPred.const_elim_l=> ->.
Qed. Qed.
End pvs. End pvs.
Require Export program_logic.pviewshifts. Require Export program_logic.pviewshifts.
Require Import program_logic.ownership. Require Import program_logic.ownership.
(* TODO: State lemmas in terms of inv and own. *)
Definition vs {Λ Σ} (E1 E2 : coPset) (P Q : iProp Λ Σ) : iProp Λ Σ := Definition vs {Λ Σ} (E1 E2 : coPset) (P Q : iProp Λ Σ) : iProp Λ Σ :=
( (P pvs E1 E2 Q))%I. ( (P pvs E1 E2 Q))%I.
Arguments vs {_ _} _ _ _%I _%I. Arguments vs {_ _} _ _ _%I _%I.
...@@ -25,14 +27,18 @@ Proof. ...@@ -25,14 +27,18 @@ Proof.
intros; rewrite -{1}always_const; apply always_intro, impl_intro_l. intros; rewrite -{1}always_const; apply always_intro, impl_intro_l.
by rewrite always_const (right_id _ _). by rewrite always_const (right_id _ _).
Qed. Qed.
Global Instance vs_ne E1 E2 n : Global Instance vs_ne E1 E2 n :
Proper (dist n ==> dist n ==> dist n) (@vs Λ Σ E1 E2). Proper (dist n ==> dist n ==> dist n) (@vs Λ Σ E1 E2).
Proof. by intros P P' HP Q Q' HQ; rewrite /vs HP HQ. Qed. Proof. by intros P P' HP Q Q' HQ; rewrite /vs HP HQ. Qed.
Global Instance vs_proper E1 E2 : Proper (() ==> () ==> ()) (@vs Λ Σ E1 E2). Global Instance vs_proper E1 E2 : Proper (() ==> () ==> ()) (@vs Λ Σ E1 E2).
Proof. apply ne_proper_2, _. Qed. Proof. apply ne_proper_2, _. Qed.
Lemma vs_mono E1 E2 P P' Q Q' : Lemma vs_mono E1 E2 P P' Q Q' :
P P' Q' Q P' >{E1,E2}> Q' P >{E1,E2}> Q. P P' Q' Q P' >{E1,E2}> Q' P >{E1,E2}> Q.
Proof. by intros HP HQ; rewrite /vs -HP HQ. Qed. Proof. by intros HP HQ; rewrite /vs -HP HQ. Qed.
Global Instance vs_mono' E1 E2 : Global Instance vs_mono' E1 E2 :
Proper (flip () ==> () ==> ()) (@vs Λ Σ E1 E2). Proper (flip () ==> () ==> ()) (@vs Λ Σ E1 E2).
Proof. by intros until 2; apply vs_mono. Qed. Proof. by intros until 2; apply vs_mono. Qed.
...@@ -41,6 +47,7 @@ Lemma vs_false_elim E1 E2 P : False >{E1,E2}> P. ...@@ -41,6 +47,7 @@ Lemma vs_false_elim E1 E2 P : False >{E1,E2}> P.
Proof. apply vs_alt, False_elim. Qed. Proof. apply vs_alt, False_elim. Qed.
Lemma vs_timeless E P : TimelessP P P >{E}> P. Lemma vs_timeless E P : TimelessP P P >{E}> P.
Proof. by intros ?; apply vs_alt, pvs_timeless. Qed. Proof. by intros ?; apply vs_alt, pvs_timeless. Qed.
Lemma vs_transitive E1 E2 E3 P Q R : Lemma vs_transitive E1 E2 E3 P Q R :
E2 E1 E3 (P >{E1,E2}> Q Q >{E2,E3}> R) P >{E1,E3}> R. E2 E1 E3 (P >{E1,E2}> Q Q >{E2,E3}> R) P >{E1,E3}> R.
Proof. Proof.
...@@ -48,54 +55,67 @@ Proof. ...@@ -48,54 +55,67 @@ Proof.
rewrite always_and (associative _) (always_elim (P _)) impl_elim_r. rewrite always_and (associative _) (always_elim (P _)) impl_elim_r.
by rewrite pvs_impl_r; apply pvs_trans. by rewrite pvs_impl_r; apply pvs_trans.
Qed. Qed.
Lemma vs_transitive' E P Q R : (P >{E}> Q Q >{E}> R) P >{E}> R. Lemma vs_transitive' E P Q R : (P >{E}> Q Q >{E}> R) P >{E}> R.
Proof. apply vs_transitive; solve_elem_of. Qed. Proof. apply vs_transitive; solve_elem_of. Qed.
Lemma vs_reflexive E P : P >{E}> P. Lemma vs_reflexive E P : P >{E}> P.
Proof. apply vs_alt, pvs_intro. Qed. Proof. apply vs_alt, pvs_intro. Qed.
Lemma vs_impl E P Q : (P Q) P >{E}> Q. Lemma vs_impl E P Q : (P Q) P >{E}> Q.
Proof. Proof.
apply always_intro, impl_intro_l. apply always_intro, impl_intro_l.
by rewrite always_elim impl_elim_r -pvs_intro. by rewrite always_elim impl_elim_r -pvs_intro.
Qed. Qed.
Lemma vs_frame_l E1 E2 P Q R : P >{E1,E2}> Q (R P) >{E1,E2}> (R Q). Lemma vs_frame_l E1 E2 P Q R : P >{E1,E2}> Q (R P) >{E1,E2}> (R Q).
Proof. Proof.
apply always_intro, impl_intro_l. apply always_intro, impl_intro_l.
rewrite -pvs_frame_l always_and_sep_r -always_wand_impl -(associative _). rewrite -pvs_frame_l always_and_sep_r -always_wand_impl -(associative _).
by rewrite always_elim wand_elim_r. by rewrite always_elim wand_elim_r.
Qed. Qed.
Lemma vs_frame_r E1 E2 P Q R : P >{E1,E2}> Q (P R) >{E1,E2}> (Q R). Lemma vs_frame_r E1 E2 P Q R : P >{E1,E2}> Q (P R) >{E1,E2}> (Q R).
Proof. rewrite !(commutative _ _ R); apply vs_frame_l. Qed. Proof. rewrite !(commutative _ _ R); apply vs_frame_l. Qed.
Lemma vs_mask_frame E1 E2 Ef P Q : Lemma vs_mask_frame E1 E2 Ef P Q :
Ef (E1 E2) = P >{E1,E2}> Q P >{E1 Ef,E2 Ef}> Q. Ef (E1 E2) = P >{E1,E2}> Q P >{E1 Ef,E2 Ef}> Q.
Proof. Proof.
intros ?; apply always_intro, impl_intro_l; rewrite (pvs_mask_frame _ _ Ef)//. intros ?; apply always_intro, impl_intro_l; rewrite (pvs_mask_frame _ _ Ef)//.
by rewrite always_elim impl_elim_r. by rewrite always_elim impl_elim_r.
Qed. Qed.
Lemma vs_mask_frame' E Ef P Q : Ef E = P >{E}> Q P >{E Ef}> Q. Lemma vs_mask_frame' E Ef P Q : Ef E = P >{E}> Q P >{E Ef}> Q.
Proof. intros; apply vs_mask_frame; solve_elem_of. Qed. Proof. intros; apply vs_mask_frame; solve_elem_of. Qed.
Lemma vs_open i P : ownI i P >{{[i]},}> P. Lemma vs_open i P : ownI i P >{{[i]},}> P.
Proof. intros; apply vs_alt, pvs_open. Qed. Proof. intros; apply vs_alt, pvs_open. Qed.
Lemma vs_open' E i P : i E ownI i P >{{[i]} E,E}> P. Lemma vs_open' E i P : i E ownI i P >{{[i]} E,E}> P.
Proof. Proof.
intros; rewrite -{2}(left_id_L () E) -vs_mask_frame; last solve_elem_of. intros; rewrite -{2}(left_id_L () E) -vs_mask_frame; last solve_elem_of.
apply vs_open. apply vs_open.
Qed. Qed.
Lemma vs_close i P : (ownI i P P) >{,{[i]}}> True. Lemma vs_close i P : (ownI i P P) >{,{[i]}}> True.
Proof. intros; apply vs_alt, pvs_close. Qed. Proof. intros; apply vs_alt, pvs_close. Qed.
Lemma vs_close' E i P : i E (ownI i P P) >{E,{[i]} E}> True. Lemma vs_close' E i P : i E (ownI i P P) >{E,{[i]} E}> True.
Proof. Proof.
intros; rewrite -{1}(left_id_L () E) -vs_mask_frame; last solve_elem_of. intros; rewrite -{1}(left_id_L () E) -vs_mask_frame; last solve_elem_of.
apply vs_close. apply vs_close.
Qed. Qed.
Lemma vs_updateP E m (P : iGst Λ Σ Prop) :
Lemma vs_ownG_updateP E m (P : iGst Λ Σ Prop) :
m ~~>: P ownG m >{E}> ( m', P m' ownG m'). m ~~>: P ownG m >{E}> ( m', P m' ownG m').
Proof. by intros; apply vs_alt, pvs_updateP. Qed. Proof. by intros; apply vs_alt, pvs_ownG_updateP. Qed.
Lemma vs_updateP_empty `{Empty (iGst Λ Σ), !CMRAIdentity (iGst Λ Σ)}
Lemma vs_ownG_updateP_empty `{Empty (iGst Λ Σ), !CMRAIdentity (iGst Λ Σ)}
E (P : iGst Λ Σ Prop) : E (P : iGst Λ Σ Prop) :
~~>: P True >{E}> ( m', P m' ownG m'). ~~>: P True >{E}> ( m', P m' ownG m').
Proof. by intros; apply vs_alt, pvs_updateP_empty. Qed. Proof. by intros; apply vs_alt, pvs_ownG_updateP_empty. Qed.
Lemma vs_update E m m' : m ~~> m' ownG m >{E}> ownG m'. Lemma vs_update E m m' : m ~~> m' ownG m >{E}> ownG m'.
Proof. by intros; apply vs_alt, pvs_update. Qed. Proof. by intros; apply vs_alt, pvs_ownG_update. Qed.
Lemma vs_alloc E P : ¬set_finite E P >{E}> ( i, (i E) ownI i P). Lemma vs_alloc E P : ¬set_finite E P >{E}> ( i, (i E) ownI i P).
Proof. by intros; apply vs_alt, pvs_alloc. Qed. Proof. by intros; apply vs_alt, pvs_alloc. Qed.
End vs. End vs.
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment