Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Terraform modules
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Simcha van Collem
Iris
Commits
e5fcec8f
Commit
e5fcec8f
authored
9 years ago
by
Robbert Krebbers
Browse files
Options
Downloads
Patches
Plain Diff
Remove let as a built-in and make it syntactic sugar again.
parent
0b7e25c2
No related branches found
No related tags found
No related merge requests found
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
heap_lang/heap_lang.v
+0
-9
0 additions, 9 deletions
heap_lang/heap_lang.v
heap_lang/lifting.v
+0
-8
0 additions, 8 deletions
heap_lang/lifting.v
heap_lang/sugar.v
+15
-6
15 additions, 6 deletions
heap_lang/sugar.v
with
15 additions
and
23 deletions
heap_lang/heap_lang.v
+
0
−
9
View file @
e5fcec8f
...
...
@@ -19,8 +19,6 @@ Inductive expr :=
|
Var
(
x
:
string
)
|
Rec
(
f
x
:
string
)
(
e
:
expr
)
|
App
(
e1
e2
:
expr
)
(* Let *)
|
Let
(
x
:
string
)
(
e1
e2
:
expr
)
(* Base types and their operations *)
|
Lit
(
l
:
base_lit
)
|
UnOp
(
op
:
un_op
)
(
e
:
expr
)
...
...
@@ -78,7 +76,6 @@ Definition state := gmap loc val.
Inductive
ectx_item
:=
|
AppLCtx
(
e2
:
expr
)
|
AppRCtx
(
v1
:
val
)
|
LetCtx
(
x
:
string
)
(
e2
:
expr
)
|
UnOpCtx
(
op
:
un_op
)
|
BinOpLCtx
(
op
:
bin_op
)
(
e2
:
expr
)
|
BinOpRCtx
(
op
:
bin_op
)
(
v1
:
val
)
...
...
@@ -104,7 +101,6 @@ Definition fill_item (Ki : ectx_item) (e : expr) : expr :=
match
Ki
with
|
AppLCtx
e2
=>
App
e
e2
|
AppRCtx
v1
=>
App
(
of_val
v1
)
e
|
LetCtx
x
e2
=>
Let
x
e
e2
|
UnOpCtx
op
=>
UnOp
op
e
|
BinOpLCtx
op
e2
=>
BinOp
op
e
e2
|
BinOpRCtx
op
v1
=>
BinOp
op
(
of_val
v1
)
e
...
...
@@ -133,8 +129,6 @@ Fixpoint subst (e : expr) (x : string) (v : val) : expr :=
|
Var
y
=>
if
decide
(
x
=
y
∧
x
≠
""
)
then
of_val
v
else
Var
y
|
Rec
f
y
e
=>
Rec
f
y
(
if
decide
(
x
≠
f
∧
x
≠
y
)
then
subst
e
x
v
else
e
)
|
App
e1
e2
=>
App
(
subst
e1
x
v
)
(
subst
e2
x
v
)
|
Let
y
e1
e2
=>
Let
y
(
subst
e1
x
v
)
(
if
decide
(
x
≠
y
)
then
subst
e2
x
v
else
e2
)
|
Lit
l
=>
Lit
l
|
UnOp
op
e
=>
UnOp
op
(
subst
e
x
v
)
|
BinOp
op
e1
e2
=>
BinOp
op
(
subst
e1
x
v
)
(
subst
e2
x
v
)
...
...
@@ -178,9 +172,6 @@ Inductive head_step : expr -> state -> expr -> state -> option expr -> Prop :=
to_val
e2
=
Some
v2
→
head_step
(
App
(
Rec
f
x
e1
)
e2
)
σ
(
subst
(
subst
e1
f
(
RecV
f
x
e1
))
x
v2
)
σ
None
|
DeltaS
x
e1
e2
v1
σ
:
to_val
e1
=
Some
v1
→
head_step
(
Let
x
e1
e2
)
σ
(
subst
e2
x
v1
)
σ
None
|
UnOpS
op
l
l'
σ
:
un_op_eval
op
l
=
Some
l'
→
head_step
(
UnOp
op
(
Lit
l
))
σ
(
Lit
l'
)
σ
None
...
...
This diff is collapsed.
Click to expand it.
heap_lang/lifting.v
+
0
−
8
View file @
e5fcec8f
...
...
@@ -90,14 +90,6 @@ Proof.
last
by
intros
;
inv_step
;
eauto
.
Qed
.
Lemma
wp_let
E
x
e1
e2
v
Q
:
to_val
e1
=
Some
v
→
▷
wp
E
(
subst
e2
x
v
)
Q
⊑
wp
E
(
Let
x
e1
e2
)
Q
.
Proof
.
intros
.
rewrite
-
(
wp_lift_pure_det_step
(
Let
_
_
_)
(
subst
e2
x
v
)
None
)
?right_id
//=
;
intros
;
inv_step
;
eauto
.
Qed
.
Lemma
wp_un_op
E
op
l
l'
Q
:
un_op_eval
op
l
=
Some
l'
→
▷
Q
(
LitV
l'
)
⊑
wp
E
(
UnOp
op
(
Lit
l
))
Q
.
...
...
This diff is collapsed.
Click to expand it.
heap_lang/sugar.v
+
15
−
6
View file @
e5fcec8f
...
...
@@ -3,8 +3,10 @@ Import uPred heap_lang.
(** Define some syntactic sugar. LitTrue and LitFalse are defined in heap_lang.v. *)
Notation
Lam
x
e
:=
(
Rec
""
x
e
)
.
Notation
Let
x
e1
e2
:=
(
App
(
Lam
x
e2
)
e1
)
.
Notation
Seq
e1
e2
:=
(
Let
""
e1
e2
)
.
Notation
LamV
x
e
:=
(
RecV
""
x
e
)
.
Notation
LetCtx
x
e2
:=
(
AppRCtx
(
LamV
x
e2
))
.
Notation
SeqCtx
e2
:=
(
LetCtx
""
e2
)
.
Module
notations
.
...
...
@@ -14,7 +16,7 @@ Module notations.
Coercion
LitNat
:
nat
>->
base_lit
.
Coercion
LitBool
:
bool
>->
base_lit
.
(* No coercion from base_lit to expr. This makes is slightly easier to tell
(*
*
No coercion from base_lit to expr. This makes is slightly easier to tell
apart language and Coq expressions. *)
Coercion
Var
:
string
>->
expr
.
Coercion
App
:
expr
>->
Funclass
.
...
...
@@ -33,18 +35,21 @@ Module notations.
Notation
"e1 = e2"
:=
(
BinOp
EqOp
e1
%
L
e2
%
L
)
(
at
level
70
)
:
lang_scope
.
(* The unicode ← is already part of the notation "_ ← _; _" for bind. *)
Notation
"e1 <- e2"
:=
(
Store
e1
%
L
e2
%
L
)
(
at
level
80
)
:
lang_scope
.
Notation
"'let:' x := e1 'in' e2"
:=
(
Let
x
e1
%
L
e2
%
L
)
(
at
level
102
,
x
at
level
1
,
e1
at
level
1
,
e2
at
level
200
)
:
lang_scope
.
Notation
"e1 ; e2"
:=
(
Seq
e1
%
L
e2
%
L
)
(
at
level
100
,
e2
at
level
200
)
:
lang_scope
.
Notation
"'rec:' f x := e"
:=
(
Rec
f
x
e
%
L
)
(
at
level
102
,
f
at
level
1
,
x
at
level
1
,
e
at
level
200
)
:
lang_scope
.
Notation
"'if' e1 'then' e2 'else' e3"
:=
(
If
e1
%
L
e2
%
L
e3
%
L
)
(
at
level
200
,
e1
,
e2
,
e3
at
level
200
)
:
lang_scope
.
(* derived notions, in order of declaration *)
(** Derived notions, in order of declaration. The notations for let and seq
are stated explicitly instead of relying on the Notations Let and Seq as
defined above. This is needed because App is now a coercion, and these
notations are otherwise not pretty printed back accordingly. *)
Notation
"λ: x , e"
:=
(
Lam
x
e
%
L
)
(
at
level
102
,
x
at
level
1
,
e
at
level
200
)
:
lang_scope
.
Notation
"'let:' x := e1 'in' e2"
:=
(
Lam
x
e2
%
L
e1
%
L
)
(
at
level
102
,
x
at
level
1
,
e1
at
level
1
,
e2
at
level
200
)
:
lang_scope
.
Notation
"e1 ; e2"
:=
(
Lam
""
e2
%
L
e1
%
L
)
(
at
level
100
,
e2
at
level
200
)
:
lang_scope
.
End
notations
.
Section
suger
.
...
...
@@ -57,6 +62,10 @@ Lemma wp_lam E x ef e v Q :
to_val
e
=
Some
v
→
▷
wp
E
(
subst
ef
x
v
)
Q
⊑
wp
E
(
App
(
Lam
x
ef
)
e
)
Q
.
Proof
.
intros
.
by
rewrite
-
wp_rec
?subst_empty
;
eauto
.
Qed
.
Lemma
wp_let
E
x
e1
e2
v
Q
:
to_val
e1
=
Some
v
→
▷
wp
E
(
subst
e2
x
v
)
Q
⊑
wp
E
(
Let
x
e1
e2
)
Q
.
Proof
.
apply
wp_lam
.
Qed
.
Lemma
wp_seq
E
e1
e2
Q
:
wp
E
e1
(
λ
_,
▷
wp
E
e2
Q
)
⊑
wp
E
(
Seq
e1
e2
)
Q
.
Proof
.
rewrite
-
(
wp_bind
[
LetCtx
""
e2
])
.
apply
wp_mono
=>
v
.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment