Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Terraform modules
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Simcha van Collem
Iris
Commits
c905411d
Commit
c905411d
authored
9 years ago
by
Robbert Krebbers
Browse files
Options
Downloads
Patches
Plain Diff
Simplify barrier protocol proofs.
parent
2d9c5f33
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
barrier/protocol.v
+25
-43
25 additions, 43 deletions
barrier/protocol.v
with
25 additions
and
43 deletions
barrier/protocol.v
+
25
−
43
View file @
c905411d
...
@@ -17,12 +17,9 @@ Inductive prim_step : relation state :=
...
@@ -17,12 +17,9 @@ Inductive prim_step : relation state :=
|
ChangeI
p
I2
I1
:
prim_step
(
State
p
I1
)
(
State
p
I2
)
|
ChangeI
p
I2
I1
:
prim_step
(
State
p
I1
)
(
State
p
I2
)
|
ChangePhase
I
:
prim_step
(
State
Low
I
)
(
State
High
I
)
.
|
ChangePhase
I
:
prim_step
(
State
Low
I
)
(
State
High
I
)
.
Definition
change_tok
(
I
:
gset
gname
)
:
set
token
:=
{[
t
|
match
t
with
Change
i
=>
i
∉
I
|
Send
=>
False
end
]}
.
Definition
send_tok
(
p
:
phase
)
:
set
token
:=
match
p
with
Low
=>
∅
|
High
=>
{[
Send
]}
end
.
Definition
tok
(
s
:
state
)
:
set
token
:=
Definition
tok
(
s
:
state
)
:
set
token
:=
change_tok
(
state_I
s
)
∪
send_tok
(
state_phase
s
)
.
{[
t
|
∃
i
,
t
=
Change
i
∧
i
∉
state_I
s
]}
∪
(
if
state_phase
s
is
High
then
{[
Send
]}
else
∅
)
.
Global
Arguments
tok
!
_
/.
Global
Arguments
tok
!
_
/.
Canonical
Structure
sts
:=
sts
.
STS
prim_step
tok
.
Canonical
Structure
sts
:=
sts
.
STS
prim_step
tok
.
...
@@ -35,30 +32,22 @@ Definition low_states : set state := {[ s | state_phase s = Low ]}.
...
@@ -35,30 +32,22 @@ Definition low_states : set state := {[ s | state_phase s = Low ]}.
Lemma
i_states_closed
i
:
sts
.
closed
(
i_states
i
)
{[
Change
i
]}
.
Lemma
i_states_closed
i
:
sts
.
closed
(
i_states
i
)
{[
Change
i
]}
.
Proof
.
Proof
.
split
.
split
;
first
(
intros
[[]
I
];
set_solver
)
.
-
intros
[
p
I
]
.
rewrite
/=
/
i_states
/
change_tok
.
destruct
p
;
set_solver
.
(* If we do the destruct of the states early, and then inversion
-
(* If we do the destruct of the states early, and then inversion
on the proof of a transition, it doesn't work - we do not obtain
on the proof of a transition, it doesn't work - we do not obtain
the equalities we need. So we destruct the states late, because this
the equalities we need. So we destruct the states late, because this
means we can use "destruct" instead of "inversion". *)
means we can use "destruct" instead of "inversion". *)
intros
s1
s2
Hs1
[
T1
T2
Hdisj
Hstep'
]
.
intros
s1
s2
Hs1
[
T1
T2
Hdisj
Hstep'
]
.
inversion_clear
Hstep'
as
[?
?
?
?
Htrans
_
_
Htok
]
.
inversion_clear
Hstep'
as
[?
?
?
?
Htrans
_
_
Htok
]
.
destruct
Htrans
as
[[]
??|];
done
||
set_solver
.
destruct
Htrans
;
simpl
in
*
;
last
done
.
move
:
Hs1
Hdisj
Htok
.
rewrite
elem_of_equiv_empty
elem_of_equiv
.
move
=>
?
/
(_
(
Change
i
))
Hdisj
/
(_
(
Change
i
));
move
:
Hdisj
.
rewrite
elem_of_intersection
elem_of_union
!
elem_of_mkSet
.
intros
;
apply
dec_stable
.
destruct
p
;
set_solver
.
Qed
.
Qed
.
Lemma
low_states_closed
:
sts
.
closed
low_states
{[
Send
]}
.
Lemma
low_states_closed
:
sts
.
closed
low_states
{[
Send
]}
.
Proof
.
Proof
.
split
.
split
;
first
(
intros
[??];
set_solver
)
.
-
intros
[
p
I
]
.
rewrite
/
low_states
.
set_solver
.
intros
s1
s2
Hs1
[
T1
T2
Hdisj
Hstep'
]
.
-
intros
s1
s2
Hs1
[
T1
T2
Hdisj
Hstep'
]
.
inversion_clear
Hstep'
as
[?
?
?
?
Htrans
_
_
Htok
]
.
inversion_clear
Hstep'
as
[?
?
?
?
Htrans
_
_
Htok
]
.
destruct
Htrans
as
[[]
??|];
done
||
set_solver
.
destruct
Htrans
;
simpl
in
*
;
first
by
destruct
p
.
exfalso
;
apply
dec_stable
;
set_solver
.
Qed
.
Qed
.
(* Proof that we can take the steps we need. *)
(* Proof that we can take the steps we need. *)
...
@@ -70,12 +59,8 @@ Lemma wait_step i I :
...
@@ -70,12 +59,8 @@ Lemma wait_step i I :
sts
.
steps
(
State
High
I
,
{[
Change
i
]})
(
State
High
(
I
∖
{[
i
]}),
∅
)
.
sts
.
steps
(
State
High
I
,
{[
Change
i
]})
(
State
High
(
I
∖
{[
i
]}),
∅
)
.
Proof
.
Proof
.
intros
.
apply
rtc_once
.
intros
.
apply
rtc_once
.
constructor
;
first
constructor
;
rewrite
/=
/
change_tok
;
[
set_solver
by
eauto
..|]
.
constructor
;
first
constructor
;
[
set_solver
..|]
.
(* TODO this proof is rather annoying. *)
apply
elem_of_equiv
=>
-
[
j
|];
last
set_solver
.
apply
elem_of_equiv
=>
t
.
rewrite
!
elem_of_union
.
rewrite
!
elem_of_mkSet
/
change_tok
/=.
destruct
t
as
[
j
|];
last
set_solver
.
rewrite
elem_of_difference
elem_of_singleton
.
destruct
(
decide
(
i
=
j
));
set_solver
.
destruct
(
decide
(
i
=
j
));
set_solver
.
Qed
.
Qed
.
...
@@ -85,17 +70,14 @@ Lemma split_step p i i1 i2 I :
...
@@ -85,17 +70,14 @@ Lemma split_step p i i1 i2 I :
(
State
p
I
,
{[
Change
i
]})
(
State
p
I
,
{[
Change
i
]})
(
State
p
({[
i1
]}
∪
({[
i2
]}
∪
(
I
∖
{[
i
]}))),
{[
Change
i1
;
Change
i2
]})
.
(
State
p
({[
i1
]}
∪
({[
i2
]}
∪
(
I
∖
{[
i
]}))),
{[
Change
i1
;
Change
i2
]})
.
Proof
.
Proof
.
intros
.
apply
rtc_once
.
intros
.
apply
rtc_once
.
constructor
;
first
constructor
.
con
struct
or
;
first
constructor
;
simpl
.
-
de
struct
p
;
set_solver
.
-
destruct
p
;
set_solver
.
-
destruct
p
;
set_solver
.
(* This gets annoying... and I think I can see a pattern with all these proofs. Automatable? *)
-
apply
elem_of_equiv
=>
/=
-
[
j
|];
last
set_solver
.
-
apply
elem_of_equiv
=>
t
.
destruct
t
;
last
set_solver
.
set_unfold
;
rewrite
!
(
inj_iff
Change
)
.
rewrite
!
elem_of_mkSet
!
not_elem_of_union
!
not_elem_of_singleton
assert
(
Change
j
∈
match
p
with
Low
=>
∅
|
High
=>
{[
Send
]}
end
↔
False
)
not_elem_of_difference
elem_of_singleton
!
(
inj_iff
Change
)
.
as
->
by
(
destruct
p
;
set_solver
)
.
destruct
p
;
naive_solver
.
destruct
(
decide
(
i1
=
j
))
as
[
->
|];
first
naive_solver
.
-
apply
elem_of_equiv
=>
t
.
destruct
t
as
[
j
|];
last
set_solver
.
destruct
(
decide
(
i2
=
j
))
as
[
->
|];
first
naive_solver
.
rewrite
!
elem_of_mkSet
!
not_elem_of_union
!
not_elem_of_singleton
destruct
(
decide
(
i
=
j
))
as
[
->
|];
naive_solver
.
not_elem_of_difference
elem_of_singleton
!
(
inj_iff
Change
)
.
destruct
(
decide
(
i1
=
j
))
as
[
->
|];
first
tauto
.
destruct
(
decide
(
i2
=
j
))
as
[
->
|];
intuition
.
Qed
.
Qed
.
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment