Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Terraform modules
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Simcha van Collem
Iris
Commits
b91562fe
Commit
b91562fe
authored
9 years ago
by
Robbert Krebbers
Browse files
Options
Downloads
Patches
Plain Diff
Put arguments of lifting lemmas in more consistent order.
parent
15058014
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
barrier/lifting.v
+8
-8
8 additions, 8 deletions
barrier/lifting.v
barrier/sugar.v
+5
-5
5 additions, 5 deletions
barrier/sugar.v
barrier/tests.v
+1
-1
1 addition, 1 deletion
barrier/tests.v
with
14 additions
and
14 deletions
barrier/lifting.v
+
8
−
8
View file @
b91562fe
...
@@ -126,7 +126,7 @@ Proof.
...
@@ -126,7 +126,7 @@ Proof.
Q
(
App
(
Rec
ef
)
e
))
//=
;
last
by
intros
;
inv_step
;
eauto
.
Q
(
App
(
Rec
ef
)
e
))
//=
;
last
by
intros
;
inv_step
;
eauto
.
by
apply
later_mono
,
forall_intro
=>
e2
;
apply
impl_intro_l
,
const_elim_l
=>
->
.
by
apply
later_mono
,
forall_intro
=>
e2
;
apply
impl_intro_l
,
const_elim_l
=>
->
.
Qed
.
Qed
.
Lemma
wp_plus
n1
n2
E
Q
:
Lemma
wp_plus
E
n1
n2
Q
:
▷
Q
(
LitNatV
(
n1
+
n2
))
⊑
wp
E
(
Plus
(
LitNat
n1
)
(
LitNat
n2
))
Q
.
▷
Q
(
LitNatV
(
n1
+
n2
))
⊑
wp
E
(
Plus
(
LitNat
n1
)
(
LitNat
n2
))
Q
.
Proof
.
Proof
.
rewrite
-
(
wp_lift_pure_step
E
(
λ
e'
,
e'
=
LitNat
(
n1
+
n2
)))
//=
;
rewrite
-
(
wp_lift_pure_step
E
(
λ
e'
,
e'
=
LitNat
(
n1
+
n2
)))
//=
;
...
@@ -134,7 +134,7 @@ Proof.
...
@@ -134,7 +134,7 @@ Proof.
apply
later_mono
,
forall_intro
=>
e2
;
apply
impl_intro_l
,
const_elim_l
=>
->
.
apply
later_mono
,
forall_intro
=>
e2
;
apply
impl_intro_l
,
const_elim_l
=>
->
.
by
rewrite
-
wp_value'
.
by
rewrite
-
wp_value'
.
Qed
.
Qed
.
Lemma
wp_le_true
n1
n2
E
Q
:
Lemma
wp_le_true
E
n1
n2
Q
:
n1
≤
n2
→
n1
≤
n2
→
▷
Q
LitTrueV
⊑
wp
E
(
Le
(
LitNat
n1
)
(
LitNat
n2
))
Q
.
▷
Q
LitTrueV
⊑
wp
E
(
Le
(
LitNat
n1
)
(
LitNat
n2
))
Q
.
Proof
.
Proof
.
...
@@ -143,7 +143,7 @@ Proof.
...
@@ -143,7 +143,7 @@ Proof.
apply
later_mono
,
forall_intro
=>
e2
;
apply
impl_intro_l
,
const_elim_l
=>
->
.
apply
later_mono
,
forall_intro
=>
e2
;
apply
impl_intro_l
,
const_elim_l
=>
->
.
by
rewrite
-
wp_value'
.
by
rewrite
-
wp_value'
.
Qed
.
Qed
.
Lemma
wp_le_false
n1
n2
E
Q
:
Lemma
wp_le_false
E
n1
n2
Q
:
n1
>
n2
→
n1
>
n2
→
▷
Q
LitFalseV
⊑
wp
E
(
Le
(
LitNat
n1
)
(
LitNat
n2
))
Q
.
▷
Q
LitFalseV
⊑
wp
E
(
Le
(
LitNat
n1
)
(
LitNat
n2
))
Q
.
Proof
.
Proof
.
...
@@ -152,7 +152,7 @@ Proof.
...
@@ -152,7 +152,7 @@ Proof.
apply
later_mono
,
forall_intro
=>
e2
;
apply
impl_intro_l
,
const_elim_l
=>
->
.
apply
later_mono
,
forall_intro
=>
e2
;
apply
impl_intro_l
,
const_elim_l
=>
->
.
by
rewrite
-
wp_value'
.
by
rewrite
-
wp_value'
.
Qed
.
Qed
.
Lemma
wp_fst
e1
v1
e2
v2
E
Q
:
Lemma
wp_fst
E
e1
v1
e2
v2
Q
:
to_val
e1
=
Some
v1
→
to_val
e2
=
Some
v2
→
to_val
e1
=
Some
v1
→
to_val
e2
=
Some
v2
→
▷
Q
v1
⊑
wp
E
(
Fst
(
Pair
e1
e2
))
Q
.
▷
Q
v1
⊑
wp
E
(
Fst
(
Pair
e1
e2
))
Q
.
Proof
.
Proof
.
...
@@ -161,7 +161,7 @@ Proof.
...
@@ -161,7 +161,7 @@ Proof.
apply
later_mono
,
forall_intro
=>
e2'
;
apply
impl_intro_l
,
const_elim_l
=>
->
.
apply
later_mono
,
forall_intro
=>
e2'
;
apply
impl_intro_l
,
const_elim_l
=>
->
.
by
rewrite
-
wp_value'
.
by
rewrite
-
wp_value'
.
Qed
.
Qed
.
Lemma
wp_snd
e1
v1
e2
v2
E
Q
:
Lemma
wp_snd
E
e1
v1
e2
v2
Q
:
to_val
e1
=
Some
v1
→
to_val
e2
=
Some
v2
→
to_val
e1
=
Some
v1
→
to_val
e2
=
Some
v2
→
▷
Q
v2
⊑
wp
E
(
Snd
(
Pair
e1
e2
))
Q
.
▷
Q
v2
⊑
wp
E
(
Snd
(
Pair
e1
e2
))
Q
.
Proof
.
Proof
.
...
@@ -170,7 +170,7 @@ Proof.
...
@@ -170,7 +170,7 @@ Proof.
apply
later_mono
,
forall_intro
=>
e2'
;
apply
impl_intro_l
,
const_elim_l
=>
->
.
apply
later_mono
,
forall_intro
=>
e2'
;
apply
impl_intro_l
,
const_elim_l
=>
->
.
by
rewrite
-
wp_value'
.
by
rewrite
-
wp_value'
.
Qed
.
Qed
.
Lemma
wp_case_inl
e0
v0
e1
e2
E
Q
:
Lemma
wp_case_inl
E
e0
v0
e1
e2
Q
:
to_val
e0
=
Some
v0
→
to_val
e0
=
Some
v0
→
▷
wp
E
e1
.[
e0
/
]
Q
⊑
wp
E
(
Case
(
InjL
e0
)
e1
e2
)
Q
.
▷
wp
E
e1
.[
e0
/
]
Q
⊑
wp
E
(
Case
(
InjL
e0
)
e1
e2
)
Q
.
Proof
.
Proof
.
...
@@ -178,7 +178,7 @@ Proof.
...
@@ -178,7 +178,7 @@ Proof.
(
Case
(
InjL
e0
)
e1
e2
))
//=
;
last
by
intros
;
inv_step
;
eauto
.
(
Case
(
InjL
e0
)
e1
e2
))
//=
;
last
by
intros
;
inv_step
;
eauto
.
by
apply
later_mono
,
forall_intro
=>
e1'
;
apply
impl_intro_l
,
const_elim_l
=>
->
.
by
apply
later_mono
,
forall_intro
=>
e1'
;
apply
impl_intro_l
,
const_elim_l
=>
->
.
Qed
.
Qed
.
Lemma
wp_case_inr
e0
v0
e1
e2
E
Q
:
Lemma
wp_case_inr
E
e0
v0
e1
e2
Q
:
to_val
e0
=
Some
v0
→
to_val
e0
=
Some
v0
→
▷
wp
E
e2
.[
e0
/
]
Q
⊑
wp
E
(
Case
(
InjR
e0
)
e1
e2
)
Q
.
▷
wp
E
e2
.[
e0
/
]
Q
⊑
wp
E
(
Case
(
InjR
e0
)
e1
e2
)
Q
.
Proof
.
Proof
.
...
@@ -188,7 +188,7 @@ Proof.
...
@@ -188,7 +188,7 @@ Proof.
Qed
.
Qed
.
(** Some derived stateless axioms *)
(** Some derived stateless axioms *)
Lemma
wp_le
n1
n2
E
P
Q
:
Lemma
wp_le
E
n1
n2
P
Q
:
(
n1
≤
n2
→
P
⊑
▷
Q
LitTrueV
)
→
(
n1
≤
n2
→
P
⊑
▷
Q
LitTrueV
)
→
(
n1
>
n2
→
P
⊑
▷
Q
LitFalseV
)
→
(
n1
>
n2
→
P
⊑
▷
Q
LitFalseV
)
→
P
⊑
wp
E
(
Le
(
LitNat
n1
)
(
LitNat
n2
))
Q
.
P
⊑
wp
E
(
Le
(
LitNat
n1
)
(
LitNat
n2
))
Q
.
...
...
This diff is collapsed.
Click to expand it.
barrier/sugar.v
+
5
−
5
View file @
b91562fe
...
@@ -31,17 +31,17 @@ Proof.
...
@@ -31,17 +31,17 @@ Proof.
to talk to the Autosubst guys. *)
to talk to the Autosubst guys. *)
by
asimpl
.
by
asimpl
.
Qed
.
Qed
.
Lemma
wp_let
e1
e2
E
Q
:
Lemma
wp_let
E
e1
e2
Q
:
wp
E
e1
(
λ
v
,
▷
wp
E
(
e2
.[
of_val
v
/
])
Q
)
⊑
wp
E
(
Let
e1
e2
)
Q
.
wp
E
e1
(
λ
v
,
▷
wp
E
(
e2
.[
of_val
v
/
])
Q
)
⊑
wp
E
(
Let
e1
e2
)
Q
.
Proof
.
Proof
.
rewrite
-
(
wp_bind
[
LetCtx
e2
])
.
apply
wp_mono
=>
v
.
rewrite
-
(
wp_bind
[
LetCtx
e2
])
.
apply
wp_mono
=>
v
.
by
rewrite
-
wp_lam
//=
to_of_val
.
by
rewrite
-
wp_lam
//=
to_of_val
.
Qed
.
Qed
.
Lemma
wp_if_true
e1
e2
E
Q
:
▷
wp
E
e1
Q
⊑
wp
E
(
If
LitTrue
e1
e2
)
Q
.
Lemma
wp_if_true
E
e1
e2
Q
:
▷
wp
E
e1
Q
⊑
wp
E
(
If
LitTrue
e1
e2
)
Q
.
Proof
.
rewrite
-
wp_case_inl
//.
by
asimpl
.
Qed
.
Proof
.
rewrite
-
wp_case_inl
//.
by
asimpl
.
Qed
.
Lemma
wp_if_false
e1
e2
E
Q
:
▷
wp
E
e2
Q
⊑
wp
E
(
If
LitFalse
e1
e2
)
Q
.
Lemma
wp_if_false
E
e1
e2
Q
:
▷
wp
E
e2
Q
⊑
wp
E
(
If
LitFalse
e1
e2
)
Q
.
Proof
.
rewrite
-
wp_case_inr
//.
by
asimpl
.
Qed
.
Proof
.
rewrite
-
wp_case_inr
//.
by
asimpl
.
Qed
.
Lemma
wp_lt
n1
n2
E
P
Q
:
Lemma
wp_lt
E
n1
n2
P
Q
:
(
n1
<
n2
→
P
⊑
▷
Q
LitTrueV
)
→
(
n1
<
n2
→
P
⊑
▷
Q
LitTrueV
)
→
(
n1
≥
n2
→
P
⊑
▷
Q
LitFalseV
)
→
(
n1
≥
n2
→
P
⊑
▷
Q
LitFalseV
)
→
P
⊑
wp
E
(
Lt
(
LitNat
n1
)
(
LitNat
n2
))
Q
.
P
⊑
wp
E
(
Lt
(
LitNat
n1
)
(
LitNat
n2
))
Q
.
...
@@ -49,7 +49,7 @@ Proof.
...
@@ -49,7 +49,7 @@ Proof.
intros
;
rewrite
-
(
wp_bind
[
LeLCtx
_])
-
wp_plus
-
later_intro
/=.
intros
;
rewrite
-
(
wp_bind
[
LeLCtx
_])
-
wp_plus
-
later_intro
/=.
auto
using
wp_le
with
lia
.
auto
using
wp_le
with
lia
.
Qed
.
Qed
.
Lemma
wp_eq
n1
n2
E
P
Q
:
Lemma
wp_eq
E
n1
n2
P
Q
:
(
n1
=
n2
→
P
⊑
▷
Q
LitTrueV
)
→
(
n1
=
n2
→
P
⊑
▷
Q
LitTrueV
)
→
(
n1
≠
n2
→
P
⊑
▷
Q
LitFalseV
)
→
(
n1
≠
n2
→
P
⊑
▷
Q
LitFalseV
)
→
P
⊑
wp
E
(
Eq
(
LitNat
n1
)
(
LitNat
n2
))
Q
.
P
⊑
wp
E
(
Eq
(
LitNat
n1
)
(
LitNat
n2
))
Q
.
...
...
This diff is collapsed.
Click to expand it.
barrier/tests.v
+
1
−
1
View file @
b91562fe
...
@@ -73,7 +73,7 @@ Module LiftingTests.
...
@@ -73,7 +73,7 @@ Module LiftingTests.
{
apply
and_mono
;
first
done
.
by
rewrite
-
later_intro
.
}
{
apply
and_mono
;
first
done
.
by
rewrite
-
later_intro
.
}
apply
later_mono
.
apply
later_mono
.
(* Go on. *)
(* Go on. *)
rewrite
-
(
wp_let
_
(
FindPred'
(
LitNat
n1
)
(
Var
0
)
(
LitNat
n2
)
(
FindPred
$
LitNat
n2
)))
.
rewrite
-
(
wp_let
_
_
(
FindPred'
(
LitNat
n1
)
(
Var
0
)
(
LitNat
n2
)
(
FindPred
$
LitNat
n2
)))
.
rewrite
-
wp_plus
.
asimpl
.
rewrite
-
wp_plus
.
asimpl
.
rewrite
-
(
wp_bind
[
CaseCtx
_
_])
.
rewrite
-
(
wp_bind
[
CaseCtx
_
_])
.
rewrite
-!
later_intro
/=.
rewrite
-!
later_intro
/=.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment