Skip to content
Snippets Groups Projects
Commit ade2edb9 authored by Robbert Krebbers's avatar Robbert Krebbers
Browse files

Revert "Iterated later modality."

This commit reverts cdce49a7, which turns out to be no longer useful,
and which I thus no longer wish to maintain.
parent c13ee61f
No related branches found
No related tags found
No related merge requests found
......@@ -328,13 +328,6 @@ Arguments uPred_always_if _ !_ _/.
Notation "□? p P" := (uPred_always_if p P)
(at level 20, p at level 0, P at level 20, format "□? p P").
Definition uPred_laterN {M} (n : nat) (P : uPred M) : uPred M :=
Nat.iter n uPred_later P.
Instance: Params (@uPred_laterN) 2.
Notation "▷^ n P" := (uPred_laterN n P)
(at level 20, n at level 9, right associativity,
format "▷^ n P") : uPred_scope.
Definition uPred_now_True {M} (P : uPred M) : uPred M := False P.
Notation "◇ P" := (uPred_now_True P)
(at level 20, right associativity) : uPred_scope.
......@@ -987,8 +980,6 @@ Lemma always_entails_l' P Q : (P ⊢ □ Q) → P ⊢ □ Q ★ P.
Proof. intros; rewrite -always_and_sep_l'; auto. Qed.
Lemma always_entails_r' P Q : (P Q) P P Q.
Proof. intros; rewrite -always_and_sep_r'; auto. Qed.
Lemma always_laterN n P : ▷^n P ⊣⊢ ▷^n P.
Proof. induction n as [|n IH]; simpl; auto. by rewrite always_later IH. Qed.
(* Conditional always *)
Global Instance always_if_ne n p : Proper (dist n ==> dist n) (@uPred_always_if M p).
......@@ -1071,60 +1062,6 @@ Proof. apply wand_intro_r;rewrite -later_sep; eauto using wand_elim_l. Qed.
Lemma later_iff P Q : (P Q) P Q.
Proof. by rewrite /uPred_iff later_and !later_impl. Qed.
(* n-times later *)
Global Instance laterN_ne n m : Proper (dist n ==> dist n) (@uPred_laterN M m).
Proof. induction m; simpl. by intros ???. solve_proper. Qed.
Global Instance laterN_proper m :
Proper ((⊣⊢) ==> (⊣⊢)) (@uPred_laterN M m) := ne_proper _.
Lemma later_laterN n P : ▷^(S n) P ⊣⊢ ▷^n P.
Proof. done. Qed.
Lemma laterN_later n P : ▷^(S n) P ⊣⊢ ▷^n P.
Proof. induction n; simpl; auto. Qed.
Lemma laterN_plus n1 n2 P : ▷^(n1 + n2) P ⊣⊢ ▷^n1 ▷^n2 P.
Proof. induction n1; simpl; auto. Qed.
Lemma laterN_le n1 n2 P : n1 n2 ▷^n1 P ▷^n2 P.
Proof. induction 1; simpl; by rewrite -?later_intro. Qed.
Lemma laterN_mono n P Q : (P Q) ▷^n P ▷^n Q.
Proof. induction n; simpl; auto. Qed.
Lemma laterN_intro n P : P ▷^n P.
Proof. induction n as [|n IH]; simpl; by rewrite -?later_intro. Qed.
Lemma laterN_and n P Q : ▷^n (P Q) ⊣⊢ ▷^n P ▷^n Q.
Proof. induction n as [|n IH]; simpl; rewrite -?later_and; auto. Qed.
Lemma laterN_or n P Q : ▷^n (P Q) ⊣⊢ ▷^n P ▷^n Q.
Proof. induction n as [|n IH]; simpl; rewrite -?later_or; auto. Qed.
Lemma laterN_forall {A} n (Φ : A uPred M) : (▷^n a, Φ a) ⊣⊢ ( a, ▷^n Φ a).
Proof. induction n as [|n IH]; simpl; rewrite -?later_forall; auto. Qed.
Lemma laterN_exist_1 {A} n (Φ : A uPred M) : ( a, ▷^n Φ a) (▷^n a, Φ a).
Proof. induction n as [|n IH]; simpl; rewrite ?later_exist_1; auto. Qed.
Lemma laterN_exist_2 `{Inhabited A} n (Φ : A uPred M) :
(▷^n a, Φ a) a, ▷^n Φ a.
Proof. induction n as [|n IH]; simpl; rewrite -?later_exist_2; auto. Qed.
Lemma laterN_sep n P Q : ▷^n (P Q) ⊣⊢ ▷^n P ▷^n Q.
Proof. induction n as [|n IH]; simpl; rewrite -?later_sep; auto. Qed.
Global Instance laterN_mono' n : Proper (() ==> ()) (@uPred_laterN M n).
Proof. intros P Q; apply laterN_mono. Qed.
Global Instance laterN_flip_mono' n :
Proper (flip () ==> flip ()) (@uPred_laterN M n).
Proof. intros P Q; apply laterN_mono. Qed.
Lemma laterN_True n : ▷^n True ⊣⊢ True.
Proof. apply (anti_symm ()); auto using laterN_intro. Qed.
Lemma laterN_impl n P Q : ▷^n (P Q) ▷^n P ▷^n Q.
Proof.
apply impl_intro_l; rewrite -laterN_and; eauto using impl_elim, laterN_mono.
Qed.
Lemma laterN_exist n `{Inhabited A} (Φ : A uPred M) :
▷^n ( a, Φ a) ⊣⊢ ( a, ▷^n Φ a).
Proof. apply: anti_symm; eauto using laterN_exist_2, laterN_exist_1. Qed.
Lemma laterN_wand n P Q : ▷^n (P -★ Q) ▷^n P -★ ▷^n Q.
Proof.
apply wand_intro_r; rewrite -laterN_sep; eauto using wand_elim_l,laterN_mono.
Qed.
Lemma laterN_iff n P Q : ▷^n (P Q) ▷^n P ▷^n Q.
Proof. by rewrite /uPred_iff laterN_and !laterN_impl. Qed.
(* True now *)
Global Instance now_True_ne n : Proper (dist n ==> dist n) (@uPred_now_True M).
Proof. solve_proper. Qed.
......@@ -1390,8 +1327,6 @@ Global Instance valid_persistent {A : cmraT} (a : A) :
Proof. by intros; rewrite /PersistentP always_valid. Qed.
Global Instance later_persistent P : PersistentP P PersistentP ( P).
Proof. by intros; rewrite /PersistentP always_later; apply later_mono. Qed.
Global Instance laterN_persistent n P : PersistentP P PersistentP (▷^n P).
Proof. induction n; apply _. Qed.
Global Instance ownM_persistent : Persistent a PersistentP (@uPred_ownM M a).
Proof. intros. by rewrite /PersistentP always_ownM. Qed.
Global Instance from_option_persistent {A} P (Ψ : A uPred M) (mx : option A) :
......@@ -1427,14 +1362,8 @@ Proof.
eapply IH with x'; eauto using cmra_validN_S, cmra_validN_op_l.
Qed.
Lemma soundness_laterN n : ¬(True ▷^n False).
Proof.
intros H. apply (adequacy False n). rewrite H {H}.
induction n as [|n IH]; rewrite /= ?IH; auto using rvs_intro.
Qed.
Theorem soundness : ¬ (True False).
Proof. exact (soundness_laterN 0). Qed.
Proof. exact (adequacy False 0). Qed.
End uPred_logic.
(* Hint DB for the logic *)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment