Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Terraform modules
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Simcha van Collem
Iris
Commits
98b48609
Commit
98b48609
authored
9 years ago
by
Ralf Jung
Browse files
Options
Downloads
Patches
Plain Diff
make proofs of physical lifting much shorter
parent
4fae25bb
No related branches found
No related tags found
No related merge requests found
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
barrier/heap_lang.v
+48
-0
48 additions, 0 deletions
barrier/heap_lang.v
barrier/heap_lang_tactics.v
+5
-1
5 additions, 1 deletion
barrier/heap_lang_tactics.v
barrier/lifting.v
+49
-47
49 additions, 47 deletions
barrier/lifting.v
with
102 additions
and
48 deletions
barrier/heap_lang.v
+
48
−
0
View file @
98b48609
...
...
@@ -105,7 +105,9 @@ Inductive ectx_item :=
|
CasLCtx
(
e1
:
expr
)
(
e2
:
expr
)
|
CasMCtx
(
v0
:
val
)
(
e2
:
expr
)
|
CasRCtx
(
v0
:
val
)
(
v1
:
val
)
.
Notation
ectx
:=
(
list
ectx_item
)
.
Implicit
Types
Ki
:
ectx_item
.
Implicit
Types
K
:
ectx
.
...
...
@@ -132,6 +134,7 @@ Definition ectx_item_fill (Ki : ectx_item) (e : expr) : expr :=
|
CasMCtx
v0
e2
=>
Cas
(
of_val
v0
)
e
e2
|
CasRCtx
v0
v1
=>
Cas
(
of_val
v0
)
(
of_val
v1
)
e
end
.
Instance
ectx_fill
:
Fill
ectx
expr
:=
fix
go
K
e
:=
let
_
:
Fill
_
_
:=
@
go
in
match
K
with
[]
=>
e
|
Ki
::
K
=>
ectx_item_fill
Ki
(
fill
K
e
)
end
.
...
...
@@ -181,6 +184,9 @@ Inductive head_step : expr -> state -> expr -> state -> option expr -> Prop :=
σ
!!
l
=
Some
v1
→
head_step
(
Cas
(
Loc
l
)
e1
e2
)
σ
LitTrue
(
<
[
l
:=
v2
]
>
σ
)
None
.
Definition
head_reducible
e
σ
:
Prop
:=
∃
e'
σ'
ef
,
head_step
e
σ
e'
σ'
ef
.
(** Atomic expressions *)
Definition
atomic
(
e
:
expr
)
:=
match
e
with
...
...
@@ -202,40 +208,53 @@ Inductive prim_step
(** Basic properties about the language *)
Lemma
to_of_val
v
:
to_val
(
of_val
v
)
=
Some
v
.
Proof
.
by
induction
v
;
simplify_option_equality
.
Qed
.
Lemma
of_to_val
e
v
:
to_val
e
=
Some
v
→
of_val
v
=
e
.
Proof
.
revert
v
;
induction
e
;
intros
;
simplify_option_equality
;
auto
with
f_equal
.
Qed
.
Instance
:
Injective
(
=
)
(
=
)
of_val
.
Proof
.
by
intros
??
Hv
;
apply
(
injective
Some
);
rewrite
-!
to_of_val
Hv
.
Qed
.
Instance
ectx_item_fill_inj
Ki
:
Injective
(
=
)
(
=
)
(
ectx_item_fill
Ki
)
.
Proof
.
destruct
Ki
;
intros
???;
simplify_equality'
;
auto
with
f_equal
.
Qed
.
Instance
ectx_fill_inj
K
:
Injective
(
=
)
(
=
)
(
fill
K
)
.
Proof
.
red
;
induction
K
as
[|
Ki
K
IH
];
naive_solver
.
Qed
.
Lemma
fill_app
K1
K2
e
:
fill
(
K1
++
K2
)
e
=
fill
K1
(
fill
K2
e
)
.
Proof
.
revert
e
;
induction
K1
;
simpl
;
auto
with
f_equal
.
Qed
.
Lemma
fill_val
K
e
:
is_Some
(
to_val
(
fill
K
e
))
→
is_Some
(
to_val
e
)
.
Proof
.
intros
[
v'
Hv'
];
revert
v'
Hv'
.
induction
K
as
[|[]];
intros
;
simplify_option_equality
;
eauto
.
Qed
.
Lemma
fill_not_val
K
e
:
to_val
e
=
None
→
to_val
(
fill
K
e
)
=
None
.
Proof
.
rewrite
!
eq_None_not_Some
;
eauto
using
fill_val
.
Qed
.
Lemma
values_head_stuck
e1
σ1
e2
σ2
ef
:
head_step
e1
σ1
e2
σ2
ef
→
to_val
e1
=
None
.
Proof
.
destruct
1
;
naive_solver
.
Qed
.
Lemma
values_stuck
e1
σ1
e2
σ2
ef
:
prim_step
e1
σ1
e2
σ2
ef
→
to_val
e1
=
None
.
Proof
.
intros
[???
->
->
?];
eauto
using
fill_not_val
,
values_head_stuck
.
Qed
.
Lemma
atomic_not_val
e
:
atomic
e
→
to_val
e
=
None
.
Proof
.
destruct
e
;
naive_solver
.
Qed
.
Lemma
atomic_fill
K
e
:
atomic
(
fill
K
e
)
→
to_val
e
=
None
→
K
=
[]
.
Proof
.
rewrite
eq_None_not_Some
.
destruct
K
as
[|[]];
naive_solver
eauto
using
fill_val
.
Qed
.
Lemma
atomic_head_step
e1
σ1
e2
σ2
ef
:
atomic
e1
→
head_step
e1
σ1
e2
σ2
ef
→
is_Some
(
to_val
e2
)
.
Proof
.
destruct
2
;
simpl
;
rewrite
?to_of_val
;
naive_solver
.
Qed
.
Lemma
atomic_step
e1
σ1
e2
σ2
ef
:
atomic
e1
→
prim_step
e1
σ1
e2
σ2
ef
→
is_Some
(
to_val
e2
)
.
Proof
.
...
...
@@ -243,9 +262,11 @@ Proof.
assert
(
K
=
[])
as
->
by
eauto
10
using
atomic_fill
,
values_head_stuck
.
naive_solver
eauto
using
atomic_head_step
.
Qed
.
Lemma
head_ctx_step_val
Ki
e
σ1
e2
σ2
ef
:
head_step
(
ectx_item_fill
Ki
e
)
σ1
e2
σ2
ef
→
is_Some
(
to_val
e
)
.
Proof
.
destruct
Ki
;
inversion_clear
1
;
simplify_option_equality
;
eauto
.
Qed
.
Lemma
fill_item_inj
Ki1
Ki2
e1
e2
:
to_val
e1
=
None
→
to_val
e2
=
None
→
ectx_item_fill
Ki1
e1
=
ectx_item_fill
Ki2
e2
→
Ki1
=
Ki2
.
...
...
@@ -255,6 +276,7 @@ Proof.
|
H
:
to_val
(
of_val
_)
=
None
|
-
_
=>
by
rewrite
to_of_val
in
H
end
;
auto
.
Qed
.
(* When something does a step, and another decomposition of the same expression
has a non-val [e] in the hole, then [K] is a left sub-context of [K'] - in
other words, [e] also contains the reducible expression *)
...
...
@@ -270,12 +292,29 @@ Proof.
cut
(
Ki
=
Ki'
);
[
naive_solver
eauto
using
prefix_of_cons
|]
.
eauto
using
fill_item_inj
,
values_head_stuck
,
fill_not_val
.
Qed
.
Lemma
prim_head_step
e1
σ1
e2
σ2
ef
:
head_reducible
e1
σ1
→
prim_step
e1
σ1
e2
σ2
ef
→
head_step
e1
σ1
e2
σ2
ef
.
Proof
.
intros
(
e2''
&
σ2''
&
ef''
&
Hstep''
)
[
K'
e1'
e2'
Heq1
Heq2
Hstep
]
.
assert
(
K'
`
prefix_of
`
[])
as
Hemp
.
{
eapply
step_by_val
;
last
first
.
-
eexact
Hstep''
.
-
eapply
values_head_stuck
.
eexact
Hstep
.
-
done
.
}
destruct
K'
;
last
by
(
exfalso
;
eapply
prefix_of_nil_not
;
eassumption
)
.
by
subst
e1
e2
.
Qed
.
Lemma
alloc_fresh
e
v
σ
:
let
l
:=
fresh
(
dom
_
σ
)
in
to_val
e
=
Some
v
→
head_step
(
Alloc
e
)
σ
(
Loc
l
)
(
<
[
l
:=
v
]
>
σ
)
None
.
Proof
.
by
intros
;
apply
AllocS
,
(
not_elem_of_dom
(
D
:=
gset
positive
)),
is_fresh
.
Qed
.
End
heap_lang
.
(** Language *)
...
...
@@ -284,6 +323,7 @@ Program Canonical Structure heap_lang : language := {|
of_val
:=
heap_lang
.
of_val
;
to_val
:=
heap_lang
.
to_val
;
atomic
:=
heap_lang
.
atomic
;
prim_step
:=
heap_lang
.
prim_step
;
|}
.
Solve
Obligations
with
eauto
using
heap_lang
.
to_of_val
,
heap_lang
.
of_to_val
,
heap_lang
.
values_stuck
,
heap_lang
.
atomic_not_val
,
heap_lang
.
atomic_step
.
Global
Instance
heap_lang_ctx
:
CtxLanguage
heap_lang
heap_lang
.
ectx
.
...
...
@@ -299,3 +339,11 @@ Proof.
exists
(
fill
K'
e2''
);
rewrite
heap_lang
.
fill_app
;
split
;
auto
.
econstructor
;
eauto
.
Qed
.
Lemma
head_reducible_reducible
e
σ
:
heap_lang
.
head_reducible
e
σ
→
reducible
e
σ
.
Proof
.
intros
H
.
destruct
H
;
destruct_conjs
.
do
3
eexists
.
eapply
heap_lang
.
Ectx_step
with
(
K
:=[]);
last
eassumption
;
done
.
Qed
.
This diff is collapsed.
Click to expand it.
barrier/heap_lang_tactics.v
+
5
−
1
View file @
98b48609
...
...
@@ -61,7 +61,8 @@ Ltac reshape_expr e tac :=
end
in
go
(
@
nil
ectx_item
)
e
.
Ltac
do_step
tac
:=
try
match
goal
with
|
-
reducible
_
_
=>
eexists
_,
_,
_
end
;
try
match
goal
with
|
-
language
.
reducible
_
_
=>
eexists
_,
_,
_
end
;
try
match
goal
with
|
-
head_reducible
_
_
=>
eexists
_,
_,
_
end
;
simpl
;
match
goal
with
|
|
-
prim_step
?e1
?σ1
?e2
?σ2
?ef
=>
...
...
@@ -69,4 +70,7 @@ Ltac do_step tac :=
eapply
Ectx_step
with
K
e1'
_);
[
reflexivity
|
reflexivity
|];
first
[
apply
alloc_fresh
|
econstructor
];
rewrite
?to_of_val
;
tac
;
fail
|
|
-
head_step
?e1
?σ1
?e2
?σ2
?ef
=>
first
[
apply
alloc_fresh
|
econstructor
];
rewrite
?to_of_val
;
tac
;
fail
end
.
This diff is collapsed.
Click to expand it.
barrier/lifting.v
+
49
−
47
View file @
98b48609
...
...
@@ -2,7 +2,8 @@ Require Import prelude.gmap iris.lifting.
Require
Export
iris
.
weakestpre
barrier
.
heap_lang_tactics
.
Import
uPred
.
Import
heap_lang
.
Local
Hint
Extern
0
(
reducible
_
_)
=>
do_step
ltac
:(
eauto
2
)
.
Local
Hint
Extern
0
(
language
.
reducible
_
_)
=>
do_step
ltac
:(
eauto
2
)
.
Local
Hint
Extern
0
(
head_reducible
_
_)
=>
do_step
ltac
:(
eauto
2
)
.
Section
lifting
.
Context
{
Σ
:
iFunctor
}
.
...
...
@@ -16,84 +17,75 @@ Lemma wp_bind {E e} K Q :
Proof
.
apply
wp_bind
.
Qed
.
(** Base axioms for core primitives of the language: Stateful reductions. *)
Lemma
wp_lift_step
E1
E2
(
φ
:
expr
→
state
→
Prop
)
Q
e1
σ1
:
E1
⊆
E2
→
to_val
e1
=
None
→
reducible
e1
σ1
→
(
∀
e2
σ2
ef
,
prim_step
e1
σ1
e2
σ2
ef
→
ef
=
None
∧
φ
e2
σ2
)
→
pvs
E2
E1
(
ownP
σ1
★
▷
∀
e2
σ2
,
(
■
φ
e2
σ2
∧
ownP
σ2
)
-★
pvs
E1
E2
(
wp
E2
e2
Q
))
⊑
wp
E2
e1
Q
.
Proof
.
intros
?
He
Hsafe
Hstep
.
rewrite
-
(
wp_lift_step
E1
E2
(
λ
e'
σ'
ef
,
ef
=
None
∧
φ
e'
σ'
)
_
_
σ1
)
//.
apply
pvs_mono
,
sep_mono
,
later_mono
;
first
done
.
apply
forall_mono
=>
e2
;
apply
forall_mono
=>
σ2
.
apply
forall_intro
=>
ef
;
apply
wand_intro_l
.
rewrite
always_and_sep_l'
-
associative
-
always_and_sep_l'
.
apply
const_elim_l
=>
-
[
->
?]
/=.
by
rewrite
const_equiv
//
left_id
wand_elim_r
right_id
.
Qed
.
(* TODO RJ: Figure out some better way to make the
postcondition a predicate over a *location* *)
Lemma
wp_alloc_pst
E
σ
e
v
Q
:
to_val
e
=
Some
v
→
(
ownP
σ
★
▷
(
∀
l
,
■
(
σ
!!
l
=
None
)
∧
ownP
(
<
[
l
:=
v
]
>
σ
)
-★
Q
(
LocV
l
)))
⊑
wp
E
(
Alloc
e
)
Q
.
Proof
.
intros
;
set
(
φ
e'
σ'
:=
∃
l
,
e'
=
Loc
l
∧
σ'
=
<
[
l
:=
v
]
>
σ
∧
σ
!!
l
=
None
)
.
rewrite
-
(
wp_lift_step
E
E
φ
_
_
σ
)
//
/
φ
;
last
by
intros
;
inv_step
;
eauto
.
intros
;
set
(
φ
e'
σ'
ef
:=
∃
l
,
e'
=
Loc
l
∧
σ'
=
<
[
l
:=
v
]
>
σ
∧
σ
!!
l
=
None
∧
ef
=
(
None
:
option
expr
))
.
rewrite
-
(
wp_lift_step
E
E
φ
_
_
σ
)
//
/
φ
;
last
(
by
intros
;
inv_step
;
eauto
);
[]
.
rewrite
-
pvs_intro
.
apply
sep_mono
,
later_mono
;
first
done
.
apply
forall_intro
=>
e2
;
apply
forall_intro
=>
σ2
;
apply
wand_intro_l
.
apply
forall_intro
=>
e2
;
apply
forall_intro
=>
σ2
;
apply
forall_intro
=>
ef
.
apply
wand_intro_l
.
rewrite
-
pvs_intro
always_and_sep_l'
-
associative
-
always_and_sep_l'
.
apply
const_elim_l
=>
-
[
l
[
->
[
->
?]]]
.
by
rewrite
(
forall_elim
l
)
const_equiv
//
left_id
wand_elim_r
-
wp_value'
.
apply
const_elim_l
=>
-
[
l
[
->
[
->
[?
->
]]]]
.
rewrite
right_id
(
forall_elim
l
)
const_equiv
//.
by
rewrite
left_id
wand_elim_r
-
wp_value'
.
Qed
.
Lemma
wp_lift_atomic_det_step
{
E
Q
e1
}
σ1
v2
σ2
:
to_val
e1
=
None
→
head_reducible
e1
σ1
→
(
∀
e'
σ'
ef
,
head_step
e1
σ1
e'
σ'
ef
→
ef
=
None
∧
e'
=
of_val
v2
∧
σ'
=
σ2
)
→
(
ownP
σ1
★
▷
(
ownP
σ2
-★
Q
v2
))
⊑
wp
E
e1
Q
.
Proof
.
intros
He
Hsafe
Hstep
.
rewrite
-
(
wp_lift_step
E
E
(
λ
e'
σ'
ef
,
ef
=
None
∧
e'
=
of_val
v2
∧
σ'
=
σ2
)
_
e1
σ1
)
//
;
last
first
.
{
intros
.
by
apply
Hstep
,
prim_head_step
.
}
{
by
apply
head_reducible_reducible
.
}
rewrite
-
pvs_intro
.
apply
sep_mono
,
later_mono
;
first
done
.
apply
forall_intro
=>
e2'
;
apply
forall_intro
=>
σ2'
.
apply
forall_intro
=>
ef
;
apply
wand_intro_l
.
rewrite
always_and_sep_l'
-
associative
-
always_and_sep_l'
.
apply
const_elim_l
=>
-
[
->
[
->
->
]]
/=.
rewrite
-
pvs_intro
right_id
-
wp_value
.
by
rewrite
wand_elim_r
.
Qed
.
Lemma
wp_load_pst
E
σ
l
v
Q
:
σ
!!
l
=
Some
v
→
(
ownP
σ
★
▷
(
ownP
σ
-★
Q
v
))
⊑
wp
E
(
Load
(
Loc
l
))
Q
.
Proof
.
intros
;
rewrite
-
(
wp_lift_step
E
E
(
λ
e'
σ'
,
e'
=
of_val
v
∧
σ'
=
σ
))
//
;
last
by
intros
;
inv_step
;
eauto
.
rewrite
-
pvs_intro
;
apply
sep_mono
,
later_mono
;
first
done
.
apply
forall_intro
=>
e2
;
apply
forall_intro
=>
σ2
;
apply
wand_intro_l
.
rewrite
-
pvs_intro
always_and_sep_l'
-
associative
-
always_and_sep_l'
.
apply
const_elim_l
=>
-
[
->
->
];
by
rewrite
wand_elim_r
-
wp_value
.
intros
;
rewrite
-
(
wp_lift_atomic_det_step
σ
v
σ
)
//
;
last
(
by
intros
;
inv_step
;
eauto
)
.
Qed
.
Lemma
wp_store_pst
E
σ
l
e
v
v'
Q
:
to_val
e
=
Some
v
→
σ
!!
l
=
Some
v'
→
(
ownP
σ
★
▷
(
ownP
(
<
[
l
:=
v
]
>
σ
)
-★
Q
LitUnitV
))
⊑
wp
E
(
Store
(
Loc
l
)
e
)
Q
.
Proof
.
intros
.
rewrite
-
(
wp_lift_
step
E
E
(
λ
e'
σ'
,
e'
=
LitUnit
∧
σ'
=
<
[
l
:=
v
]
>
σ
))
//
;
rewrite
-
(
wp_lift_
atomic_det_step
σ
LitUnitV
(
<
[
l
:=
v
]
>
σ
))
//
;
last
by
intros
;
inv_step
;
eauto
.
rewrite
-
pvs_intro
;
apply
sep_mono
,
later_mono
;
first
done
.
apply
forall_intro
=>
e2
;
apply
forall_intro
=>
σ2
;
apply
wand_intro_l
.
rewrite
-
pvs_intro
always_and_sep_l'
-
associative
-
always_and_sep_l'
.
apply
const_elim_l
=>
-
[
->
->
];
by
rewrite
wand_elim_r
-
wp_value'
.
Qed
.
Lemma
wp_cas_fail_pst
E
σ
l
e1
v1
e2
v2
v'
Q
:
to_val
e1
=
Some
v1
→
to_val
e2
=
Some
v2
→
σ
!!
l
=
Some
v'
→
v'
≠
v1
→
(
ownP
σ
★
▷
(
ownP
σ
-★
Q
LitFalseV
))
⊑
wp
E
(
Cas
(
Loc
l
)
e1
e2
)
Q
.
Proof
.
intros
;
rewrite
-
(
wp_lift_
step
E
E
(
λ
e'
σ'
,
e'
=
LitFalse
∧
σ'
=
σ
)
)
//
;
intros
;
rewrite
-
(
wp_lift_
atomic_det_step
σ
LitFalseV
σ
)
//
;
last
by
intros
;
inv_step
;
eauto
.
rewrite
-
pvs_intro
;
apply
sep_mono
,
later_mono
;
first
done
.
apply
forall_intro
=>
e2'
;
apply
forall_intro
=>
σ2
;
apply
wand_intro_l
.
rewrite
-
pvs_intro
always_and_sep_l'
-
associative
-
always_and_sep_l'
.
apply
const_elim_l
=>
-
[
->
->
];
by
rewrite
wand_elim_r
-
wp_value'
.
Qed
.
Lemma
wp_cas_suc_pst
E
σ
l
e1
v1
e2
v2
Q
:
to_val
e1
=
Some
v1
→
to_val
e2
=
Some
v2
→
σ
!!
l
=
Some
v1
→
(
ownP
σ
★
▷
(
ownP
(
<
[
l
:=
v2
]
>
σ
)
-★
Q
LitTrueV
))
⊑
wp
E
(
Cas
(
Loc
l
)
e1
e2
)
Q
.
Proof
.
intros
.
rewrite
-
(
wp_lift_
step
E
E
(
λ
e'
σ'
,
e'
=
LitTrue
∧
σ'
=
<
[
l
:=
v2
]
>
σ
))
//
;
rewrite
-
(
wp_lift_
atomic_det_step
σ
LitTrueV
(
<
[
l
:=
v2
]
>
σ
))
//
;
last
by
intros
;
inv_step
;
eauto
.
rewrite
-
pvs_intro
;
apply
sep_mono
,
later_mono
;
first
done
.
apply
forall_intro
=>
e2'
;
apply
forall_intro
=>
σ2
;
apply
wand_intro_l
.
rewrite
-
pvs_intro
always_and_sep_l'
-
associative
-
always_and_sep_l'
.
apply
const_elim_l
=>
-
[
->
->
];
by
rewrite
wand_elim_r
-
wp_value'
.
Qed
.
(** Base axioms for core primitives of the language: Stateless reductions *)
...
...
@@ -107,6 +99,7 @@ Proof.
apply
sep_intro_True_l
;
last
done
.
by
rewrite
-
wp_value'
//
;
apply
const_intro
.
Qed
.
Lemma
wp_lift_pure_step
E
(
φ
:
expr
→
Prop
)
Q
e1
:
to_val
e1
=
None
→
(
∀
σ1
,
reducible
e1
σ1
)
→
...
...
@@ -118,6 +111,7 @@ Proof.
apply
impl_intro_l
,
const_elim_l
=>
-
[
->
?]
/=.
by
rewrite
const_equiv
//
left_id
right_id
.
Qed
.
Lemma
wp_rec
E
ef
e
v
Q
:
to_val
e
=
Some
v
→
▷
wp
E
ef
.[
Rec
ef
,
e
/
]
Q
⊑
wp
E
(
App
(
Rec
ef
)
e
)
Q
.
...
...
@@ -126,6 +120,7 @@ Proof.
Q
(
App
(
Rec
ef
)
e
))
//=
;
last
by
intros
;
inv_step
;
eauto
.
by
apply
later_mono
,
forall_intro
=>
e2
;
apply
impl_intro_l
,
const_elim_l
=>
->
.
Qed
.
Lemma
wp_plus
E
n1
n2
Q
:
▷
Q
(
LitNatV
(
n1
+
n2
))
⊑
wp
E
(
Plus
(
LitNat
n1
)
(
LitNat
n2
))
Q
.
Proof
.
...
...
@@ -134,6 +129,7 @@ Proof.
apply
later_mono
,
forall_intro
=>
e2
;
apply
impl_intro_l
,
const_elim_l
=>
->
.
by
rewrite
-
wp_value'
.
Qed
.
Lemma
wp_le_true
E
n1
n2
Q
:
n1
≤
n2
→
▷
Q
LitTrueV
⊑
wp
E
(
Le
(
LitNat
n1
)
(
LitNat
n2
))
Q
.
...
...
@@ -143,6 +139,7 @@ Proof.
apply
later_mono
,
forall_intro
=>
e2
;
apply
impl_intro_l
,
const_elim_l
=>
->
.
by
rewrite
-
wp_value'
.
Qed
.
Lemma
wp_le_false
E
n1
n2
Q
:
n1
>
n2
→
▷
Q
LitFalseV
⊑
wp
E
(
Le
(
LitNat
n1
)
(
LitNat
n2
))
Q
.
...
...
@@ -152,6 +149,7 @@ Proof.
apply
later_mono
,
forall_intro
=>
e2
;
apply
impl_intro_l
,
const_elim_l
=>
->
.
by
rewrite
-
wp_value'
.
Qed
.
Lemma
wp_fst
E
e1
v1
e2
v2
Q
:
to_val
e1
=
Some
v1
→
to_val
e2
=
Some
v2
→
▷
Q
v1
⊑
wp
E
(
Fst
(
Pair
e1
e2
))
Q
.
...
...
@@ -161,6 +159,7 @@ Proof.
apply
later_mono
,
forall_intro
=>
e2'
;
apply
impl_intro_l
,
const_elim_l
=>
->
.
by
rewrite
-
wp_value'
.
Qed
.
Lemma
wp_snd
E
e1
v1
e2
v2
Q
:
to_val
e1
=
Some
v1
→
to_val
e2
=
Some
v2
→
▷
Q
v2
⊑
wp
E
(
Snd
(
Pair
e1
e2
))
Q
.
...
...
@@ -170,6 +169,7 @@ Proof.
apply
later_mono
,
forall_intro
=>
e2'
;
apply
impl_intro_l
,
const_elim_l
=>
->
.
by
rewrite
-
wp_value'
.
Qed
.
Lemma
wp_case_inl
E
e0
v0
e1
e2
Q
:
to_val
e0
=
Some
v0
→
▷
wp
E
e1
.[
e0
/
]
Q
⊑
wp
E
(
Case
(
InjL
e0
)
e1
e2
)
Q
.
...
...
@@ -178,6 +178,7 @@ Proof.
(
Case
(
InjL
e0
)
e1
e2
))
//=
;
last
by
intros
;
inv_step
;
eauto
.
by
apply
later_mono
,
forall_intro
=>
e1'
;
apply
impl_intro_l
,
const_elim_l
=>
->
.
Qed
.
Lemma
wp_case_inr
E
e0
v0
e1
e2
Q
:
to_val
e0
=
Some
v0
→
▷
wp
E
e2
.[
e0
/
]
Q
⊑
wp
E
(
Case
(
InjR
e0
)
e1
e2
)
Q
.
...
...
@@ -197,4 +198,5 @@ Proof.
*
rewrite
-
wp_le_true
;
auto
.
*
rewrite
-
wp_le_false
;
auto
with
lia
.
Qed
.
End
lifting
.
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment