Skip to content
Snippets Groups Projects
Commit 978eec47 authored by Ralf Jung's avatar Ralf Jung
Browse files

assume we can get rid of division for the paper

parent 5c9a1a55
No related branches found
No related tags found
No related merge requests found
......@@ -70,22 +70,7 @@ Note that $\COFEs$ is cartesian closed.
This is a natural generalization of RAs over COFEs.
All operations have to be non-expansive, and the validity predicate $\mval$ can now also depend on the step-index.
\paragraph{The division operator $\mdiv$.}
One way to describe $\mdiv$ is to say that it extracts the witness from the extension order: If $\melt \leq \meltB$, then $\melt \mdiv \meltB$ computes the difference between the two elements (\ruleref{cmra-div-op}).
Otherwise, $\mdiv$ can have arbitrary behavior.
This means that, in classical logic, the division operator can be defined for any PCM using the axiom of choice, and it will trivially satisfy \ruleref{cmra-div-op}.
However, notice that the division operator also has to be \emph{non-expansive} --- so if the carrier $\monoid$ is equipped with a non-trivial $\nequiv{n}$, there is an additional proof obligation here.
This is crucial, for the following reason:
Considering that the extension order is defined using \emph{equality}, there is a natural notion of a \emph{step-indexed extension} order using the step-indexed equivalence of the underlying COFE:
\[ \melt \mincl{n} \meltB \eqdef \Exists \meltC. \meltB \nequiv{n} \melt \mtimes \meltC \tagH{cmra-inclM} \]
One of the properties we would expect to hold is the usual correspondence between a step-indexed predicate and its non-step-indexed counterpart:
\[ \All \melt, \meltB. \melt \leq \meltB \Lra (\All n. \melt \mincl{n} \meltB) \tagH{cmra-incl-limit} \]
The right-to-left direction here is trick.
For every $n$, we obtain a proof that $\melt \mincl{n} \meltB$.
From this, we could extract a sequence of witnesses $(\meltC_m)_{m}$, and we need to arrive at a single witness $\meltC$ showing that $\melt \leq \meltB$.
Without the division operator, there is no reason to believe that such a witness exists.
However, since we can use the division operator, and since we know that this operator is \emph{non-expansive}, we can pick $\meltC \eqdef \meltB \mdiv \melt$, and then we can prove that this is indeed the desired witness.
\ralf{The only reason we actually have division is that we are working constructively in an impredicative universe. This is pretty silly.}
\ralf{TODO: Get rid of division.}
\paragraph{The extension axiom (\ruleref{cmra-extend}).}
Notice that the existential quantification in this axiom is \emph{constructive}, \ie it is a sigma type in Coq.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment