Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Terraform modules
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Simcha van Collem
Iris
Commits
87b4a225
Commit
87b4a225
authored
9 years ago
by
Ralf Jung
Browse files
Options
Downloads
Patches
Plain Diff
new notation for ndot, to avoid conflict with autosubst
parent
04d0796d
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
barrier/client.v
+2
-2
2 additions, 2 deletions
barrier/client.v
program_logic/namespaces.v
+9
-9
9 additions, 9 deletions
program_logic/namespaces.v
with
11 additions
and
11 deletions
barrier/client.v
+
2
−
2
View file @
87b4a225
...
...
@@ -29,11 +29,11 @@ Section ClosedProofs.
Lemma
client_safe_closed
σ
:
{{
ownP
σ
:
iProp
}}
client
{{
λ
v
,
True
}}
.
Proof
.
apply
ht_alt
.
rewrite
(
heap_alloc
⊤
(
nroot
.:
"Barrier"
));
last
first
.
apply
ht_alt
.
rewrite
(
heap_alloc
⊤
(
nroot
.
.:
"Barrier"
));
last
first
.
{
(* FIXME Really?? set_solver takes forever on "⊆ ⊤"?!? *)
by
move
=>?
_
.
}
apply
wp_strip_pvs
,
exist_elim
=>
?
.
rewrite
and_elim_l
.
rewrite
-
(
client_safe
(
nroot
.:
"Heap"
)
(
nroot
.:
"Barrier"
))
//.
rewrite
-
(
client_safe
(
nroot
.
.:
"Heap"
)
(
nroot
.
.:
"Barrier"
))
//.
(* This, too, should be automated. *)
by
apply
ndot_ne_disjoint
.
Qed
.
...
...
This diff is collapsed.
Click to expand it.
program_logic/namespaces.v
+
9
−
9
View file @
87b4a225
...
...
@@ -7,8 +7,8 @@ Definition ndot `{Countable A} (N : namespace) (x : A) : namespace :=
encode
x
::
N
.
Coercion
nclose
(
N
:
namespace
)
:
coPset
:=
coPset_suffixes
(
encode
N
)
.
Infix
".:"
:=
ndot
(
at
level
19
,
left
associativity
)
:
C_scope
.
Notation
"(.:)"
:=
ndot
(
only
parsing
)
:
C_scope
.
Infix
".
.
:"
:=
ndot
(
at
level
19
,
left
associativity
)
:
C_scope
.
Notation
"(.
.
:)"
:=
ndot
(
only
parsing
)
:
C_scope
.
Instance
ndot_inj
`{
Countable
A
}
:
Inj2
(
=
)
(
=
)
(
=
)
(
@
ndot
A
_
_)
.
Proof
.
by
intros
N1
x1
N2
x2
?;
simplify_eq
.
Qed
.
...
...
@@ -16,13 +16,13 @@ Lemma nclose_nroot : nclose nroot = ⊤.
Proof
.
by
apply
(
sig_eq_pi
_)
.
Qed
.
Lemma
encode_nclose
N
:
encode
N
∈
nclose
N
.
Proof
.
by
apply
elem_coPset_suffixes
;
exists
xH
;
rewrite
(
left_id_L
_
_)
.
Qed
.
Lemma
nclose_subseteq
`{
Countable
A
}
N
x
:
nclose
(
N
.:
x
)
⊆
nclose
N
.
Lemma
nclose_subseteq
`{
Countable
A
}
N
x
:
nclose
(
N
.
.:
x
)
⊆
nclose
N
.
Proof
.
intros
p
;
rewrite
/
nclose
!
elem_coPset_suffixes
;
intros
[
q
->
]
.
destruct
(
list_encode_suffix
N
(
N
.:
x
))
as
[
q'
?];
[
by
exists
[
encode
x
]|]
.
destruct
(
list_encode_suffix
N
(
N
.
.:
x
))
as
[
q'
?];
[
by
exists
[
encode
x
]|]
.
by
exists
(
q
++
q'
)
%
positive
;
rewrite
<-
(
assoc_L
_);
f_equal
.
Qed
.
Lemma
ndot_nclose
`{
Countable
A
}
N
x
:
encode
(
N
.:
x
)
∈
nclose
N
.
Lemma
ndot_nclose
`{
Countable
A
}
N
x
:
encode
(
N
.
.:
x
)
∈
nclose
N
.
Proof
.
apply
nclose_subseteq
with
x
,
encode_nclose
.
Qed
.
Instance
ndisjoint
:
Disjoint
namespace
:=
λ
N1
N2
,
...
...
@@ -36,16 +36,16 @@ Section ndisjoint.
Global
Instance
ndisjoint_comm
:
Comm
iff
ndisjoint
.
Proof
.
intros
N1
N2
.
rewrite
/
disjoint
/
ndisjoint
;
naive_solver
.
Qed
.
Lemma
ndot_ne_disjoint
N
(
x
y
:
A
)
:
x
≠
y
→
N
.:
x
⊥
N
.:
y
.
Proof
.
intros
Hxy
.
exists
(
N
.:
x
),
(
N
.:
y
);
naive_solver
.
Qed
.
Lemma
ndot_ne_disjoint
N
(
x
y
:
A
)
:
x
≠
y
→
N
.
.:
x
⊥
N
.
.:
y
.
Proof
.
intros
Hxy
.
exists
(
N
.
.:
x
),
(
N
.
.:
y
);
naive_solver
.
Qed
.
Lemma
ndot_preserve_disjoint_l
N1
N2
x
:
N1
⊥
N2
→
N1
.:
x
⊥
N2
.
Lemma
ndot_preserve_disjoint_l
N1
N2
x
:
N1
⊥
N2
→
N1
.
.:
x
⊥
N2
.
Proof
.
intros
(
N1'
&
N2'
&
Hpr1
&
Hpr2
&
Hl
&
Hne
)
.
exists
N1'
,
N2'
.
split_and
?;
try
done
;
[]
.
by
apply
suffix_of_cons_r
.
Qed
.
Lemma
ndot_preserve_disjoint_r
N1
N2
x
:
N1
⊥
N2
→
N1
⊥
N2
.:
x
.
Lemma
ndot_preserve_disjoint_r
N1
N2
x
:
N1
⊥
N2
→
N1
⊥
N2
.
.:
x
.
Proof
.
rewrite
!
[
N1
⊥
_]
comm
.
apply
ndot_preserve_disjoint_l
.
Qed
.
Lemma
ndisj_disjoint
N1
N2
:
N1
⊥
N2
→
nclose
N1
∩
nclose
N2
=
∅.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment