Skip to content
Snippets Groups Projects
Commit 7c3cbd4e authored by Robbert Krebbers's avatar Robbert Krebbers
Browse files

Oops!

parent 916ff44a
No related branches found
No related tags found
No related merge requests found
From iris.algebra Require Export upred.
From iris.algebra Require Import upred_big_op gmap upred_tactics.
Import uPred.
Section classes.
Context {M : ucmraT}.
Implicit Types P Q : uPred M.
Class FromAssumption (p : bool) (P Q : uPred M) := from_assumption : ?p P Q.
Global Arguments from_assumption _ _ _ {_}.
Global Instance from_assumption_exact p P : FromAssumption p P P.
Proof. destruct p; by rewrite /FromAssumption /= ?always_elim. Qed.
Global Instance from_assumption_always_l p P Q :
FromAssumption p P Q FromAssumption p ( P) Q.
Proof. rewrite /FromAssumption=><-. by rewrite always_elim. Qed.
Global Instance from_assumption_always_r P Q :
FromAssumption true P Q FromAssumption true P ( Q).
Proof. rewrite /FromAssumption=><-. by rewrite always_always. Qed.
Class IsPure (P : uPred M) (φ : Prop) := is_pure : P ⊣⊢ φ.
Global Arguments is_pure : clear implicits.
Global Instance is_pure_pure φ : IsPure ( φ) φ.
Proof. done. Qed.
Global Instance is_pure_eq {A : cofeT} (a b : A) :
Timeless a IsPure (a b) (a b).
Proof. intros; red. by rewrite timeless_eq. Qed.
Global Instance is_pure_valid `{CMRADiscrete A} (a : A) : IsPure ( a) ( a).
Proof. intros; red. by rewrite discrete_valid. Qed.
Class IntoPersistentP (P Q : uPred M) := into_persistentP : P Q.
Global Arguments into_persistentP : clear implicits.
Global Instance into_persistentP_always_trans P Q :
IntoPersistentP P Q IntoPersistentP ( P) Q | 0.
Proof. rewrite /IntoPersistentP=> ->. by rewrite always_always. Qed.
Global Instance into_persistentP_always P : IntoPersistentP ( P) P | 1.
Proof. done. Qed.
Global Instance into_persistentP_persistent P :
PersistentP P IntoPersistentP P P | 100.
Proof. done. Qed.
Class IntoLater (P Q : uPred M) := into_later : P Q.
Global Arguments into_later _ _ {_}.
Class FromLater (P Q : uPred M) := from_later : Q P.
Global Arguments from_later _ _ {_}.
Global Instance into_later_fallthrough P : IntoLater P P | 1000.
Proof. apply later_intro. Qed.
Global Instance into_later_later P : IntoLater ( P) P.
Proof. done. Qed.
Global Instance into_later_and P1 P2 Q1 Q2 :
IntoLater P1 Q1 IntoLater P2 Q2 IntoLater (P1 P2) (Q1 Q2).
Proof. intros ??; red. by rewrite later_and; apply and_mono. Qed.
Global Instance into_later_or P1 P2 Q1 Q2 :
IntoLater P1 Q1 IntoLater P2 Q2 IntoLater (P1 P2) (Q1 Q2).
Proof. intros ??; red. by rewrite later_or; apply or_mono. Qed.
Global Instance into_later_sep P1 P2 Q1 Q2 :
IntoLater P1 Q1 IntoLater P2 Q2 IntoLater (P1 P2) (Q1 Q2).
Proof. intros ??; red. by rewrite later_sep; apply sep_mono. Qed.
Global Instance into_later_big_sepM `{Countable K} {A}
(Φ Ψ : K A uPred M) (m : gmap K A) :
( x k, IntoLater (Φ k x) (Ψ k x))
IntoLater ([ map] k x m, Φ k x) ([ map] k x m, Ψ k x).
Proof.
rewrite /IntoLater=> ?. rewrite big_sepM_later; by apply big_sepM_mono.
Qed.
Global Instance into_later_big_sepS `{Countable A}
(Φ Ψ : A uPred M) (X : gset A) :
( x, IntoLater (Φ x) (Ψ x))
IntoLater ([ set] x X, Φ x) ([ set] x X, Ψ x).
Proof.
rewrite /IntoLater=> ?. rewrite big_sepS_later; by apply big_sepS_mono.
Qed.
Global Instance from_later_later P : FromLater ( P) P.
Proof. done. Qed.
Global Instance from_later_and P1 P2 Q1 Q2 :
FromLater P1 Q1 FromLater P2 Q2 FromLater (P1 P2) (Q1 Q2).
Proof. intros ??; red. by rewrite later_and; apply and_mono. Qed.
Global Instance from_later_or P1 P2 Q1 Q2 :
FromLater P1 Q1 FromLater P2 Q2 FromLater (P1 P2) (Q1 Q2).
Proof. intros ??; red. by rewrite later_or; apply or_mono. Qed.
Global Instance from_later_sep P1 P2 Q1 Q2 :
FromLater P1 Q1 FromLater P2 Q2 FromLater (P1 P2) (Q1 Q2).
Proof. intros ??; red. by rewrite later_sep; apply sep_mono. Qed.
Class IntoWand (R P Q : uPred M) := into_wand : R P -★ Q.
Global Arguments into_wand : clear implicits.
Global Instance into_wand_wand P Q : IntoWand (P -★ Q) P Q.
Proof. done. Qed.
Global Instance into_wand_impl P Q : IntoWand (P Q) P Q.
Proof. apply impl_wand. Qed.
Global Instance into_wand_iff_l P Q : IntoWand (P Q) P Q.
Proof. by apply and_elim_l', impl_wand. Qed.
Global Instance into_wand_iff_r P Q : IntoWand (P Q) Q P.
Proof. apply and_elim_r', impl_wand. Qed.
Global Instance into_wand_always R P Q : IntoWand R P Q IntoWand ( R) P Q.
Proof. rewrite /IntoWand=> ->. apply always_elim. Qed.
Class FromAnd (P Q1 Q2 : uPred M) := from_and : Q1 Q2 P.
Global Arguments from_and : clear implicits.
Global Instance from_and_and P1 P2 : FromAnd (P1 P2) P1 P2.
Proof. done. Qed.
Global Instance from_and_sep_persistent_l P1 P2 :
PersistentP P1 FromAnd (P1 P2) P1 P2.
Proof. intros. by rewrite /FromAnd always_and_sep_l. Qed.
Global Instance from_and_sep_persistent_r P1 P2 :
PersistentP P2 FromAnd (P1 P2) P1 P2.
Proof. intros. by rewrite /FromAnd always_and_sep_r. Qed.
Global Instance from_and_always P Q1 Q2 :
FromAnd P Q1 Q2 FromAnd ( P) ( Q1) ( Q2).
Proof. rewrite /FromAnd=> <-. by rewrite always_and. Qed.
Global Instance from_and_later P Q1 Q2 :
FromAnd P Q1 Q2 FromAnd ( P) ( Q1) ( Q2).
Proof. rewrite /FromAnd=> <-. by rewrite later_and. Qed.
Class FromSep (P Q1 Q2 : uPred M) := from_sep : Q1 Q2 P.
Global Arguments from_sep : clear implicits.
Global Instance from_sep_sep P1 P2 : FromSep (P1 P2) P1 P2 | 100.
Proof. done. Qed.
Global Instance from_sep_always P Q1 Q2 :
FromSep P Q1 Q2 FromSep ( P) ( Q1) ( Q2).
Proof. rewrite /FromSep=> <-. by rewrite always_sep. Qed.
Global Instance from_sep_later P Q1 Q2 :
FromSep P Q1 Q2 FromSep ( P) ( Q1) ( Q2).
Proof. rewrite /FromSep=> <-. by rewrite later_sep. Qed.
Global Instance from_sep_ownM (a b : M) :
FromSep (uPred_ownM (a b)) (uPred_ownM a) (uPred_ownM b) | 99.
Proof. by rewrite /FromSep ownM_op. Qed.
Global Instance from_sep_big_sepM
`{Countable K} {A} (Φ Ψ1 Ψ2 : K A uPred M) m :
( k x, FromSep (Φ k x) (Ψ1 k x) (Ψ2 k x))
FromSep ([ map] k x m, Φ k x)
([ map] k x m, Ψ1 k x) ([ map] k x m, Ψ2 k x).
Proof.
rewrite /FromSep=> ?. rewrite -big_sepM_sepM. by apply big_sepM_mono.
Qed.
Global Instance from_sep_big_sepS `{Countable A} (Φ Ψ1 Ψ2 : A uPred M) X :
( x, FromSep (Φ x) (Ψ1 x) (Ψ2 x))
FromSep ([ set] x X, Φ x) ([ set] x X, Ψ1 x) ([ set] x X, Ψ2 x).
Proof.
rewrite /FromSep=> ?. rewrite -big_sepS_sepS. by apply big_sepS_mono.
Qed.
Class IntoSep (p: bool) (P Q1 Q2 : uPred M) := into_sep : ?p P ?p (Q1 Q2).
Global Arguments into_sep : clear implicits.
Class IntoOp {A : cmraT} (a b1 b2 : A) := into_op : a b1 b2.
Global Arguments into_op {_} _ _ _ {_}.
Global Instance into_op_op {A : cmraT} (a b : A) : IntoOp (a b) a b.
Proof. by rewrite /IntoOp. Qed.
Global Instance into_op_persistent {A : cmraT} (a : A) :
Persistent a IntoOp a a a.
Proof. intros; apply (persistent_dup a). Qed.
Global Instance into_op_pair {A B : cmraT} (a b1 b2 : A) (a' b1' b2' : B) :
IntoOp a b1 b2 IntoOp a' b1' b2'
IntoOp (a,a') (b1,b1') (b2,b2').
Proof. by constructor. Qed.
Global Instance into_op_Some {A : cmraT} (a : A) b1 b2 :
IntoOp a b1 b2 IntoOp (Some a) (Some b1) (Some b2).
Proof. by constructor. Qed.
Global Instance into_sep_sep p P Q : IntoSep p (P Q) P Q.
Proof. rewrite /IntoSep. by rewrite always_if_sep. Qed.
Global Instance into_sep_ownM p (a b1 b2 : M) :
IntoOp a b1 b2
IntoSep p (uPred_ownM a) (uPred_ownM b1) (uPred_ownM b2).
Proof.
rewrite /IntoOp /IntoSep=> ->. by rewrite ownM_op always_if_sep.
Qed.
Global Instance into_sep_and P Q : IntoSep true (P Q) P Q.
Proof. by rewrite /IntoSep /= always_and_sep. Qed.
Global Instance into_sep_and_persistent_l P Q :
PersistentP P IntoSep false (P Q) P Q.
Proof. intros; by rewrite /IntoSep /= always_and_sep_l. Qed.
Global Instance into_sep_and_persistent_r P Q :
PersistentP Q IntoSep false (P Q) P Q.
Proof. intros; by rewrite /IntoSep /= always_and_sep_r. Qed.
Global Instance into_sep_later p P Q1 Q2 :
IntoSep p P Q1 Q2 IntoSep p ( P) ( Q1) ( Q2).
Proof. by rewrite /IntoSep -later_sep !always_if_later=> ->. Qed.
Global Instance into_sep_big_sepM
`{Countable K} {A} (Φ Ψ1 Ψ2 : K A uPred M) p m :
( k x, IntoSep p (Φ k x) (Ψ1 k x) (Ψ2 k x))
IntoSep p ([ map] k x m, Φ k x)
([ map] k x m, Ψ1 k x) ([ map] k x m, Ψ2 k x).
Proof.
rewrite /IntoSep=> ?. rewrite -big_sepM_sepM !big_sepM_always_if.
by apply big_sepM_mono.
Qed.
Global Instance into_sep_big_sepS `{Countable A} (Φ Ψ1 Ψ2 : A uPred M) p X :
( x, IntoSep p (Φ x) (Ψ1 x) (Ψ2 x))
IntoSep p ([ set] x X, Φ x) ([ set] x X, Ψ1 x) ([ set] x X, Ψ2 x).
Proof.
rewrite /IntoSep=> ?. rewrite -big_sepS_sepS !big_sepS_always_if.
by apply big_sepS_mono.
Qed.
Class Frame (R P Q : uPred M) := frame : R Q P.
Global Arguments frame : clear implicits.
Global Instance frame_here R : Frame R R True.
Proof. by rewrite /Frame right_id. Qed.
Class MakeSep (P Q PQ : uPred M) := make_sep : P Q ⊣⊢ PQ.
Global Instance make_sep_true_l P : MakeSep True P P.
Proof. by rewrite /MakeSep left_id. Qed.
Global Instance make_sep_true_r P : MakeSep P True P.
Proof. by rewrite /MakeSep right_id. Qed.
Global Instance make_sep_fallthrough P Q : MakeSep P Q (P Q) | 100.
Proof. done. Qed.
Global Instance frame_sep_l R P1 P2 Q Q' :
Frame R P1 Q MakeSep Q P2 Q' Frame R (P1 P2) Q' | 9.
Proof. rewrite /Frame /MakeSep => <- <-. by rewrite assoc. Qed.
Global Instance frame_sep_r R P1 P2 Q Q' :
Frame R P2 Q MakeSep P1 Q Q' Frame R (P1 P2) Q' | 10.
Proof. rewrite /Frame /MakeSep => <- <-. solve_sep_entails. Qed.
Class MakeAnd (P Q PQ : uPred M) := make_and : P Q ⊣⊢ PQ.
Global Instance make_and_true_l P : MakeAnd True P P.
Proof. by rewrite /MakeAnd left_id. Qed.
Global Instance make_and_true_r P : MakeAnd P True P.
Proof. by rewrite /MakeAnd right_id. Qed.
Global Instance make_and_fallthrough P Q : MakeSep P Q (P Q) | 100.
Proof. done. Qed.
Global Instance frame_and_l R P1 P2 Q Q' :
Frame R P1 Q MakeAnd Q P2 Q' Frame R (P1 P2) Q' | 9.
Proof. rewrite /Frame /MakeAnd => <- <-; eauto 10 with I. Qed.
Global Instance frame_and_r R P1 P2 Q Q' :
Frame R P2 Q MakeAnd P1 Q Q' Frame R (P1 P2) Q' | 10.
Proof. rewrite /Frame /MakeAnd => <- <-; eauto 10 with I. Qed.
Class MakeOr (P Q PQ : uPred M) := make_or : P Q ⊣⊢ PQ.
Global Instance make_or_true_l P : MakeOr True P True.
Proof. by rewrite /MakeOr left_absorb. Qed.
Global Instance make_or_true_r P : MakeOr P True True.
Proof. by rewrite /MakeOr right_absorb. Qed.
Global Instance make_or_fallthrough P Q : MakeOr P Q (P Q) | 100.
Proof. done. Qed.
Global Instance frame_or R P1 P2 Q1 Q2 Q :
Frame R P1 Q1 Frame R P2 Q2 MakeOr Q1 Q2 Q Frame R (P1 P2) Q.
Proof. rewrite /Frame /MakeOr => <- <- <-. by rewrite -sep_or_l. Qed.
Class MakeLater (P lP : uPred M) := make_later : P ⊣⊢ lP.
Global Instance make_later_true : MakeLater True True.
Proof. by rewrite /MakeLater later_True. Qed.
Global Instance make_later_fallthrough P : MakeLater P ( P) | 100.
Proof. done. Qed.
Global Instance frame_later R P Q Q' :
Frame R P Q MakeLater Q Q' Frame R ( P) Q'.
Proof.
rewrite /Frame /MakeLater=><- <-. by rewrite later_sep -(later_intro R).
Qed.
Global Instance frame_exist {A} R (Φ Ψ : A uPred M) :
( a, Frame R (Φ a) (Ψ a)) Frame R ( x, Φ x) ( x, Ψ x).
Proof. rewrite /Frame=> ?. by rewrite sep_exist_l; apply exist_mono. Qed.
Global Instance frame_forall {A} R (Φ Ψ : A uPred M) :
( a, Frame R (Φ a) (Ψ a)) Frame R ( x, Φ x) ( x, Ψ x).
Proof. rewrite /Frame=> ?. by rewrite sep_forall_l; apply forall_mono. Qed.
Class FromOr (P Q1 Q2 : uPred M) := from_or : Q1 Q2 P.
Global Arguments from_or : clear implicits.
Global Instance from_or_or P1 P2 : FromOr (P1 P2) P1 P2.
Proof. done. Qed.
Class IntoOr P Q1 Q2 := into_or : P Q1 Q2.
Global Arguments into_or : clear implicits.
Global Instance into_or_or P Q : IntoOr (P Q) P Q.
Proof. done. Qed.
Global Instance into_or_later P Q1 Q2 :
IntoOr P Q1 Q2 IntoOr ( P) ( Q1) ( Q2).
Proof. rewrite /IntoOr=>->. by rewrite later_or. Qed.
Class FromExist {A} (P : uPred M) (Φ : A uPred M) :=
from_exist : ( x, Φ x) P.
Global Arguments from_exist {_} _ _ {_}.
Global Instance from_exist_exist {A} (Φ: A uPred M): FromExist ( a, Φ a) Φ.
Proof. done. Qed.
Lemma tac_exist {A} Δ P (Φ : A uPred M) :
FromExist P Φ ( a, Δ Φ a) Δ P.
Proof. intros ? [a ?]. rewrite -(from_exist P). eauto using exist_intro'. Qed.
Class IntoExist {A} (P : uPred M) (Φ : A uPred M) :=
into_exist : P x, Φ x.
Global Arguments into_exist {_} _ _ {_}.
Global Instance into_exist_exist {A} (Φ : A uPred M) : IntoExist ( a, Φ a) Φ.
Proof. done. Qed.
Global Instance into_exist_later {A} P (Φ : A uPred M) :
IntoExist P Φ Inhabited A IntoExist ( P) (λ a, (Φ a))%I.
Proof. rewrite /IntoExist=> HP ?. by rewrite HP later_exist. Qed.
Global Instance into_exist_always {A} P (Φ : A uPred M) :
IntoExist P Φ IntoExist ( P) (λ a, (Φ a))%I.
Proof. rewrite /IntoExist=> HP. by rewrite HP always_exist. Qed.
End classes.
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment