Skip to content
Snippets Groups Projects
Commit 758d8d65 authored by Jacques-Henri Jourdan's avatar Jacques-Henri Jourdan
Browse files

Simplify frac : use a pair of a rational and a carrier

parent 8f839433
No related branches found
No related tags found
No related merge requests found
......@@ -950,6 +950,10 @@ Section prod.
Canonical Structure prodR :=
CMRAT (A * B) prod_cofe_mixin prod_cmra_mixin.
Lemma pair_op (a a' : A) (b b' : B) :
(a, b) (a', b') (a a', b b').
Proof. done. Qed.
Global Instance prod_cmra_total : CMRATotal A CMRATotal B CMRATotal prodR.
Proof.
intros H1 H2 [a b]. destruct (H1 a) as [ca ?], (H2 b) as [cb ?].
......@@ -1017,7 +1021,7 @@ Section prod_unit.
UCMRAT (A * B) prod_cofe_mixin prod_cmra_mixin prod_ucmra_mixin.
Lemma pair_split (x : A) (y : B) : (x, y) (x, ) (, y).
Proof. constructor; by rewrite /= ?left_id ?right_id. Qed.
Proof. by rewrite pair_op left_id right_id. Qed.
End prod_unit.
Arguments prodUR : clear implicits.
......
......@@ -5,207 +5,37 @@ Local Arguments op _ _ !_ !_ /.
Local Arguments validN _ _ _ !_ /.
Local Arguments valid _ _ !_ /.
Inductive frac A := Frac { frac_perm : Qp ; frac_car : A }.
Add Printing Constructor frac.
Arguments Frac {_} _ _.
Arguments frac_perm {_} _.
Arguments frac_car {_} _.
Instance: Params (@Frac) 2.
Notation frac := Qp.
Section cofe.
Context {A : cofeT}.
Implicit Types a b : A.
Implicit Types x y : frac A.
Section frac.
(* Cofe *)
Instance frac_equiv : Equiv (frac A) := λ x y,
frac_perm x = frac_perm y frac_car x frac_car y.
Instance frac_dist : Dist (frac A) := λ n x y,
frac_perm x = frac_perm y frac_car x {n} frac_car y.
Canonical Structure fracC := leibnizC frac.
Global Instance Frac_ne q n : Proper (dist n ==> dist n) (@Frac A q).
Proof. by constructor. Qed.
Global Instance Frac_proper q : Proper (() ==> ()) (@Frac A q).
Proof. by constructor. Qed.
Global Instance Frac_inj : Inj2 (=) () () (@Frac A).
Proof. by destruct 1. Qed.
Global Instance Frac_dist_inj n : Inj2 (=) (dist n) (dist n) (@Frac A).
Proof. by destruct 1. Qed.
Instance frac_valid : Valid frac := λ x, (x 1)%Qc.
Instance frac_pcore : PCore frac := λ _, None.
Instance frac_op : Op frac := λ x y, (x + y)%Qp.
Global Instance frac_perm_ne n : Proper (dist n ==> (=)) (@frac_perm A).
Proof. by destruct 1. Qed.
Global Instance frac_car_ne n : Proper (dist n ==> dist n) (@frac_car A).
Proof. by destruct 1. Qed.
Global Instance frac_perm_proper : Proper (() ==> (=)) (@frac_perm A).
Proof. by destruct 1. Qed.
Global Instance frac_car_proper : Proper (() ==> ()) (@frac_car A).
Proof. by destruct 1. Qed.
Program Definition frac_chain (c : chain (frac A)) : chain A :=
{| chain_car n := match c n return _ with Frac _ b => b end |}.
Next Obligation.
intros c n i ?; simpl. destruct (c 0) eqn:?; simplify_eq/=.
by feed inversion (chain_cauchy c n i).
Qed.
Instance frac_compl : Compl (frac A) := λ c,
Frac (frac_perm (c 0)) (compl (frac_chain c)).
Definition frac_cofe_mixin : CofeMixin (frac A).
Proof.
split.
- intros mx my; split.
+ by destruct 1; subst; constructor; try apply equiv_dist.
+ intros Hxy; feed inversion (Hxy 0); subst; constructor; try done.
apply equiv_dist=> n; by feed inversion (Hxy n).
- intros n; split.
+ by intros [q a]; constructor.
+ by destruct 1; constructor.
+ destruct 1; inversion_clear 1; constructor; etrans; eauto.
- by inversion_clear 1; constructor; done || apply dist_S.
- intros n c; constructor; simpl.
+ destruct (chain_cauchy c 0 n); auto with lia.
+ apply (conv_compl n (frac_chain c)).
Qed.
Canonical Structure fracC : cofeT := CofeT (frac A) frac_cofe_mixin.
Global Instance frac_discrete : Discrete A Discrete fracC.
Proof. by inversion_clear 2; constructor; done || apply (timeless _). Qed.
Global Instance frac_leibniz : LeibnizEquiv A LeibnizEquiv (frac A).
Proof. intros ? [??] [??] [??]; f_equal; done || by apply leibniz_equiv. Qed.
Global Instance Frac_timeless q (a : A) : Timeless a Timeless (Frac q a).
Proof. by inversion_clear 2; constructor; done || apply (timeless _). Qed.
End cofe.
Arguments fracC : clear implicits.
(* Functor on COFEs *)
Definition frac_map {A B} (f : A B) (x : frac A) : frac B :=
match x with Frac q a => Frac q (f a) end.
Instance: Params (@frac_map) 2.
Lemma frac_map_id {A} (x : frac A) : frac_map id x = x.
Proof. by destruct x. Qed.
Lemma frac_map_compose {A B C} (f : A B) (g : B C) (x : frac A) :
frac_map (g f) x = frac_map g (frac_map f x).
Proof. by destruct x. Qed.
Lemma frac_map_ext {A B : cofeT} (f g : A B) x :
( x, f x g x) frac_map f x frac_map g x.
Proof. destruct x; constructor; simpl; auto. Qed.
Instance frac_map_cmra_ne {A B : cofeT} n :
Proper ((dist n ==> dist n) ==> dist n ==> dist n) (@frac_map A B).
Proof. intros f f' Hf [??] [??] [??]; constructor; by try apply Hf. Qed.
Definition fracC_map {A B} (f : A -n> B) : fracC A -n> fracC B :=
CofeMor (frac_map f).
Instance fracC_map_ne A B n : Proper (dist n ==> dist n) (@fracC_map A B).
Proof. intros f f' Hf []; constructor; by try apply Hf. Qed.
Section cmra.
Context {A : cmraT}.
Implicit Types a b : A.
Implicit Types x y : frac A.
Instance frac_valid : Valid (frac A) := λ x,
(frac_perm x 1)%Qc frac_car x.
Global Arguments frac_valid !_/.
Instance frac_validN : ValidN (frac A) := λ n x,
(frac_perm x 1)%Qc {n} frac_car x.
Global Arguments frac_validN _ !_/.
Instance frac_pcore : PCore (frac A) := λ _, None.
Instance frac_op : Op (frac A) := λ x y,
Frac (frac_perm x + frac_perm y) (frac_car x frac_car y).
Global Arguments frac_op !_ !_ /.
Lemma Frac_op q1 q2 a b : Frac q1 a Frac q2 b = Frac (q1 + q2) (a b).
Proof. done. Qed.
Definition frac_cmra_mixin : CMRAMixin (frac A).
Definition frac_ra_mixin : RAMixin frac.
Proof.
split; try discriminate.
- intros n [??] [??] [??] [??]; constructor; by cofe_subst.
- intros ? [??] [??] [??] [??]; split; by cofe_subst.
- intros [??]; rewrite /= ?cmra_valid_validN; naive_solver eauto using O.
- intros n [q a]; destruct 1; split; auto using cmra_validN_S.
- intros [q1 a1] [q2 a2] [q3 a3]; constructor; by rewrite /= ?assoc.
- intros [q1 a1] [q2 a2]; constructor; by rewrite /= 1?comm ?[(q1+_)%Qp]comm.
- intros n [q1 a1] [q2 a2]; destruct 1; split; eauto using cmra_validN_op_l.
trans (q1 + q2)%Qp; simpl; last done.
rewrite -{1}(Qcplus_0_r q1) -Qcplus_le_mono_l; auto using Qclt_le_weak.
- intros n [q a] y1 y2 Hx Hx'.
destruct Hx, y1 as [q1 b1], y2 as [q2 b2].
apply (inj2 Frac) in Hx'; destruct Hx' as [-> ?].
destruct (cmra_extend n a b1 b2) as ([z1 z2]&?&?&?); auto.
exists (Frac q1 z1,Frac q2 z2); by repeat constructor.
split; try apply _; try done.
unfold valid, op, frac_op, frac_valid. intros. trans (x+y)%Qp. 2:done.
rewrite -{1}(Qcplus_0_r x) -Qcplus_le_mono_l; auto using Qclt_le_weak.
Qed.
Canonical Structure fracR := CMRAT (frac A) frac_cofe_mixin frac_cmra_mixin.
Canonical Structure fracR := discreteR frac frac_ra_mixin.
Global Instance frac_cmra_discrete : CMRADiscrete A CMRADiscrete fracR.
Proof.
split; first apply _.
intros [q a]; destruct 1; split; auto using cmra_discrete_valid.
Qed.
End frac.
(** Internalized properties *)
Lemma frac_equivI {M} (x y : frac A) :
x y ⊣⊢ (frac_perm x = frac_perm y frac_car x frac_car y : uPred M).
Lemma frac_equivI {M} (x y : frac) :
x y ⊣⊢ (x = y : uPred M).
Proof. by uPred.unseal. Qed.
Lemma frac_validI {M} (x : frac A) :
x ⊣⊢ ( (frac_perm x 1)%Qc frac_car x : uPred M).
Lemma frac_validI {M} (x : frac) :
x ⊣⊢ ( (x 1)%Qc : uPred M).
Proof. by uPred.unseal. Qed.
(** Exclusive *)
Global Instance frac_full_exclusive a : Exclusive (Frac 1 a).
Global Instance frac_full_exclusive : Exclusive 1%Qp.
Proof.
move => [[??]?][/Qcle_not_lt[]]; simpl in *.
move => ? /Qcle_not_lt[]; simpl in *.
by rewrite -{1}(Qcplus_0_r 1) -Qcplus_lt_mono_l.
Qed.
(** ** Local updates *)
Global Instance frac_local_update `{!LocalUpdate Lv L} :
LocalUpdate (λ x, Lv (frac_car x)) (frac_map L).
Proof.
split; first apply _. intros n [p a] [q b]; simpl.
intros ? [??]; constructor; [done|by apply (local_updateN L)].
Qed.
(** Updates *)
Lemma frac_update (a1 a2 : A) p : a1 ~~> a2 Frac p a1 ~~> Frac p a2.
Proof.
intros Ha n mz [??]; split; first by destruct mz.
pose proof (Ha n (frac_car <$> mz)); destruct mz; naive_solver.
Qed.
End cmra.
Arguments fracR : clear implicits.
(* Functor *)
Instance frac_map_cmra_monotone {A B : cmraT} (f : A B) :
CMRAMonotone f CMRAMonotone (frac_map f).
Proof.
split; try apply _.
- intros n [p a]; destruct 1; split; simpl in *; auto using validN_preserving.
- intros [q1 a1] [q2 a2] [[q3 a3] [??]]; setoid_subst.
destruct (included_preserving f a1 (a1 a3)) as [b ?].
{ by apply cmra_included_l. }
by exists (Frac q3 b); constructor.
Qed.
Program Definition fracRF (F : rFunctor) : rFunctor := {|
rFunctor_car A B := fracR (rFunctor_car F A B);
rFunctor_map A1 A2 B1 B2 fg := fracC_map (rFunctor_map F fg)
|}.
Next Obligation.
by intros F A1 A2 B1 B2 n f g Hfg; apply fracC_map_ne, rFunctor_ne.
Qed.
Next Obligation.
intros F A B x. rewrite /= -{2}(frac_map_id x).
apply frac_map_ext=>y; apply rFunctor_id.
Qed.
Next Obligation.
intros F A1 A2 A3 B1 B2 B3 f g f' g' x. rewrite /= -frac_map_compose.
apply frac_map_ext=>y; apply rFunctor_compose.
Qed.
Instance fracRF_contractive F :
rFunctorContractive F rFunctorContractive (fracRF F).
Proof.
by intros ? A1 A2 B1 B2 n f g Hfg; apply fracC_map_ne, rFunctor_contractive.
Qed.
......@@ -8,7 +8,7 @@ Import uPred.
a finmap as their state. Or maybe even beyond "as their state", i.e. arbitrary
predicates over finmaps instead of just ownP. *)
Definition heapUR : ucmraT := gmapUR loc (fracR (dec_agreeR val)).
Definition heapUR : ucmraT := gmapUR loc (prodR fracR (dec_agreeR val)).
(** The CMRA we need. *)
Class heapG Σ := HeapG {
......@@ -18,14 +18,14 @@ Class heapG Σ := HeapG {
(** The Functor we need. *)
Definition heapGF : gFunctor := authGF heapUR.
Definition to_heap : state heapUR := fmap (λ v, Frac 1 (DecAgree v)).
Definition of_heap : heapUR state := omap (maybe DecAgree frac_car).
Definition to_heap : state heapUR := fmap (λ v, (1%Qp, DecAgree v)).
Definition of_heap : heapUR state := omap (maybe DecAgree snd).
Section definitions.
Context `{i : heapG Σ}.
Definition heap_mapsto (l : loc) (q : Qp) (v: val) : iPropG heap_lang Σ :=
auth_own heap_name {[ l := Frac q (DecAgree v) ]}.
auth_own heap_name {[ l := (q, DecAgree v) ]}.
Definition heap_inv (h : heapUR) : iPropG heap_lang Σ :=
ownP (of_heap h).
Definition heap_ctx (N : namespace) : iPropG heap_lang Σ :=
......@@ -60,11 +60,11 @@ Section heap.
Lemma to_heap_valid σ : to_heap σ.
Proof. intros l. rewrite lookup_fmap. by case (σ !! l). Qed.
Lemma of_heap_insert l v h :
of_heap (<[l:=Frac 1 (DecAgree v)]> h) = <[l:=v]> (of_heap h).
Proof. by rewrite /of_heap -(omap_insert _ _ _ (Frac 1 (DecAgree v))). Qed.
of_heap (<[l:=(1%Qp, DecAgree v)]> h) = <[l:=v]> (of_heap h).
Proof. by rewrite /of_heap -(omap_insert _ _ _ (1%Qp, DecAgree v)). Qed.
Lemma of_heap_singleton_op l q v h :
({[l := Frac q (DecAgree v)]} h)
of_heap ({[l := Frac q (DecAgree v)]} h) = <[l:=v]> (of_heap h).
({[l := (q, DecAgree v)]} h)
of_heap ({[l := (q, DecAgree v)]} h) = <[l:=v]> (of_heap h).
Proof.
intros Hv. apply map_eq=> l'; destruct (decide (l' = l)) as [->|].
- move: (Hv l). rewrite /of_heap lookup_insert
......@@ -75,7 +75,7 @@ Section heap.
by rewrite (lookup_op _ h) lookup_singleton_ne // left_id_L.
Qed.
Lemma to_heap_insert l v σ :
to_heap (<[l:=v]> σ) = <[l:=Frac 1 (DecAgree v)]> (to_heap σ).
to_heap (<[l:=v]> σ) = <[l:=(1%Qp, DecAgree v)]> (to_heap σ).
Proof. by rewrite /to_heap -fmap_insert. Qed.
Lemma of_heap_None h l :
h of_heap h !! l = None h !! l = None.
......@@ -84,8 +84,8 @@ Section heap.
by case: (h !! l)=> [[q [v|]]|] //=; destruct 1; auto.
Qed.
Lemma heap_store_valid l h v1 v2 :
({[l := Frac 1 (DecAgree v1)]} h)
({[l := Frac 1 (DecAgree v2)]} h).
({[l := (1%Qp, DecAgree v1)]} h)
({[l := (1%Qp, DecAgree v2)]} h).
Proof.
intros Hv l'; move: (Hv l'). destruct (decide (l' = l)) as [->|].
- rewrite !lookup_op !lookup_singleton.
......@@ -120,17 +120,17 @@ Section heap.
Proof. rewrite /heap_mapsto. apply _. Qed.
Lemma heap_mapsto_op_eq l q1 q2 v : (l {q1} v l {q2} v) ⊣⊢ l {q1+q2} v.
Proof. by rewrite -auth_own_op op_singleton Frac_op dec_agree_idemp. Qed.
Proof. by rewrite -auth_own_op op_singleton pair_op dec_agree_idemp. Qed.
Lemma heap_mapsto_op l q1 q2 v1 v2 :
(l {q1} v1 l {q2} v2) ⊣⊢ (v1 = v2 l {q1+q2} v1).
Proof.
destruct (decide (v1 = v2)) as [->|].
{ by rewrite heap_mapsto_op_eq const_equiv // left_id. }
rewrite -auth_own_op op_singleton Frac_op dec_agree_ne //.
rewrite -auth_own_op op_singleton pair_op dec_agree_ne //.
apply (anti_symm ()); last by apply const_elim_l.
rewrite auth_own_valid gmap_validI (forall_elim l) lookup_singleton.
rewrite option_validI frac_validI discrete_valid. by apply const_elim_r.
rewrite option_validI prod_validI frac_validI discrete_valid. by apply const_elim_r.
Qed.
Lemma heap_mapsto_op_split l q v : l {q} v ⊣⊢ (l {q/2} v l {q/2} v).
......@@ -147,7 +147,7 @@ Section heap.
iFrame "Hinv Hheap". iIntros {h}. rewrite [ h]left_id.
iIntros "[% Hheap]". rewrite /heap_inv.
iApply wp_alloc_pst; first done. iFrame "Hheap". iNext.
iIntros {l} "[% Hheap]". iExists (op {[ l := Frac 1 (DecAgree v) ]}), _, _.
iIntros {l} "[% Hheap]". iExists (op {[ l := (1%Qp, DecAgree v) ]}), _, _.
rewrite [{[ _ := _ ]} ]right_id.
rewrite -of_heap_insert -(insert_singleton_op h); last by apply of_heap_None.
iFrame "Hheap". iSplit.
......@@ -162,7 +162,7 @@ Section heap.
Proof.
iIntros {?} "[#Hh [Hl HΦ]]". rewrite /heap_ctx /heap_mapsto.
iApply (auth_fsa' heap_inv (wp_fsa _) id _ N _
heap_name {[ l := Frac q (DecAgree v) ]}); simpl; eauto.
heap_name {[ l := (q, DecAgree v) ]}); simpl; eauto.
iFrame "Hh Hl". iIntros {h} "[% Hl]". rewrite /heap_inv.
iApply (wp_load_pst _ (<[l:=v]>(of_heap h)));first by rewrite lookup_insert.
rewrite of_heap_singleton_op //. iFrame "Hl". iNext.
......@@ -175,13 +175,13 @@ Section heap.
WP Store (Lit (LitLoc l)) e @ E {{ Φ }}.
Proof.
iIntros {??} "[#Hh [Hl HΦ]]". rewrite /heap_ctx /heap_mapsto.
iApply (auth_fsa' heap_inv (wp_fsa _) (alter (λ _, Frac 1 (DecAgree v)) l) _
N _ heap_name {[ l := Frac 1 (DecAgree v') ]}); simpl; eauto.
iApply (auth_fsa' heap_inv (wp_fsa _) (alter (λ _, (1%Qp, DecAgree v)) l) _
N _ heap_name {[ l := (1%Qp, DecAgree v') ]}); simpl; eauto.
iFrame "Hh Hl". iIntros {h} "[% Hl]". rewrite /heap_inv.
iApply (wp_store_pst _ (<[l:=v']>(of_heap h))); rewrite ?lookup_insert //.
rewrite alter_singleton insert_insert !of_heap_singleton_op; eauto.
iFrame "Hl". iNext. iIntros "$". iFrame "HΦ".
iPureIntro. eauto with typeclass_instances.
iPureIntro. eauto 10 with typeclass_instances.
Qed.
Lemma wp_cas_fail N E l q v' e1 v1 e2 v2 Φ :
......@@ -191,7 +191,7 @@ Section heap.
Proof.
iIntros {????} "[#Hh [Hl HΦ]]". rewrite /heap_ctx /heap_mapsto.
iApply (auth_fsa' heap_inv (wp_fsa _) id _ N _
heap_name {[ l := Frac q (DecAgree v') ]}); simpl; eauto 10.
heap_name {[ l := (q, DecAgree v') ]}); simpl; eauto 10.
iFrame "Hh Hl". iIntros {h} "[% Hl]". rewrite /heap_inv.
iApply (wp_cas_fail_pst _ (<[l:=v']>(of_heap h))); rewrite ?lookup_insert //.
rewrite of_heap_singleton_op //. iFrame "Hl". iNext.
......@@ -204,12 +204,12 @@ Section heap.
WP CAS (Lit (LitLoc l)) e1 e2 @ E {{ Φ }}.
Proof.
iIntros {???} "[#Hh [Hl HΦ]]". rewrite /heap_ctx /heap_mapsto.
iApply (auth_fsa' heap_inv (wp_fsa _) (alter (λ _, Frac 1 (DecAgree v2)) l)
_ N _ heap_name {[ l := Frac 1 (DecAgree v1) ]}); simpl; eauto 10.
iApply (auth_fsa' heap_inv (wp_fsa _) (alter (λ _, (1%Qp, DecAgree v2)) l)
_ N _ heap_name {[ l := (1%Qp, DecAgree v1) ]}); simpl; eauto 10.
iFrame "Hh Hl". iIntros {h} "[% Hl]". rewrite /heap_inv.
iApply (wp_cas_suc_pst _ (<[l:=v1]>(of_heap h))); rewrite ?lookup_insert //.
rewrite alter_singleton insert_insert !of_heap_singleton_op; eauto.
iFrame "Hl". iNext. iIntros "$". iFrame "HΦ".
iPureIntro. eauto with typeclass_instances.
iPureIntro. eauto 10 with typeclass_instances.
Qed.
End heap.
......@@ -466,6 +466,11 @@ Instance fst_proper `{Equiv A, Equiv B} : Proper ((≡) ==> (≡)) (@fst A B) :=
Instance snd_proper `{Equiv A, Equiv B} : Proper (() ==> ()) (@snd A B) := _.
Typeclasses Opaque prod_equiv.
Instance prod_leibniz `{LeibnizEquiv A, !Equivalence (() : relation A),
LeibnizEquiv B, !Equivalence (() : relation B)}
: LeibnizEquiv (A * B).
Proof. intros [] [] []; fold_leibniz; simpl; congruence. Qed.
(** ** Sums *)
Definition sum_map {A A' B B'} (f: A A') (g: B B') (xy : A + B) : A' + B' :=
match xy with inl x => inl (f x) | inr y => inr (g y) end.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment