Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Terraform modules
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Simcha van Collem
Iris
Commits
74960dec
Commit
74960dec
authored
9 years ago
by
Ralf Jung
Browse files
Options
Downloads
Patches
Plain Diff
move other exampkes back here
parent
b5d6b7bb
No related branches found
No related tags found
No related merge requests found
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
_CoqProject
+2
-0
2 additions, 0 deletions
_CoqProject
tests/joining_existentials.v
+105
-0
105 additions, 0 deletions
tests/joining_existentials.v
tests/one_shot.v
+154
-0
154 additions, 0 deletions
tests/one_shot.v
with
261 additions
and
0 deletions
_CoqProject
+
2
−
0
View file @
74960dec
...
@@ -95,3 +95,5 @@ heap_lang/lib/barrier/proof.v
...
@@ -95,3 +95,5 @@ heap_lang/lib/barrier/proof.v
heap_lang/lib/barrier/client.v
heap_lang/lib/barrier/client.v
tests/heap_lang.v
tests/heap_lang.v
tests/program_logic.v
tests/program_logic.v
tests/one_shot.v
tests/joining_existentials.v
This diff is collapsed.
Click to expand it.
tests/joining_existentials.v
0 → 100644
+
105
−
0
View file @
74960dec
From
iris
.
program_logic
Require
Import
saved_one_shot
hoare
tactics
.
From
iris
.
heap_lang
.
lib
.
barrier
Require
Import
proof
specification
.
From
iris
.
heap_lang
Require
Import
notation
par
.
Import
uPred
.
Definition
client
eM
eW1
eW2
:
expr
[]
:=
(
let
:
"b"
:=
newbarrier
#
()
in
(
eM
;;
^
signal
'
"b"
)
||
((
^
wait
'
"b"
;;
eW1
)
||
(
^
wait
'
"b"
;;
eW2
)))
.
Section
proof
.
Context
(
G
:
cFunctor
)
.
Context
{
Σ
:
gFunctors
}
`{
!
heapG
Σ
,
!
barrierG
Σ
,
!
spawnG
Σ
,
!
oneShotG
heap_lang
Σ
G
}
.
Context
(
heapN
N
:
namespace
)
.
Local
Notation
iProp
:=
(
iPropG
heap_lang
Σ
)
.
Local
Notation
X
:=
(
G
iProp
)
.
Definition
barrier_res
γ
(
P
:
X
→
iProp
)
:
iProp
:=
(
∃
x
:
X
,
one_shot_own
γ
x
★
P
x
)
%
I
.
Lemma
worker_spec
e
γ
l
(
P
Q
:
X
→
iProp
)
(
R
:
iProp
)
:
R
⊢
(
∀
x
,
{{
P
x
}}
e
{{
λ
_,
Q
x
}})
→
R
⊢
(
recv
heapN
N
l
(
barrier_res
γ
P
))
→
R
⊢
WP
wait
(
%
l
)
;;
e
{{
λ
_,
barrier_res
γ
Q
}}
.
Proof
.
intros
He
HΦ
.
rewrite
-
[
R
](
idemp
(
∧
)
%
I
)
{
1
}
He
HΦ
always_and_sep_l
{
He
HΦ
}
.
ewp
(
eapply
wait_spec
)
.
ecancel
[
recv
_
_
l
_]
.
apply
wand_intro_r
.
wp_seq
.
rewrite
/
barrier_res
sep_exist_l
.
apply
exist_elim
=>
x
.
rewrite
(
forall_elim
x
)
/
ht
always_elim
impl_wand
!
assoc
.
to_front
[
P
x
;
_
-★
_]
%
I
.
rewrite
wand_elim_r
!
wp_frame_r
.
apply
wp_mono
=>
v
.
by
rewrite
-
(
exist_intro
x
)
comm
.
Qed
.
Context
(
P'
:
iProp
)
(
P
P1
P2
Q
Q1
Q2
:
X
-
n
>
iProp
)
.
Context
{
P_split
:
∀
x
:
X
,
P
x
⊢
(
P1
x
★
P2
x
)}
.
Context
{
Q_join
:
∀
x
:
X
,
(
Q1
x
★
Q2
x
)
⊢
Q
x
}
.
Lemma
P_res_split
γ
:
barrier_res
γ
P
⊢
(
barrier_res
γ
P1
★
barrier_res
γ
P2
)
.
Proof
.
rewrite
/
barrier_res
.
apply
exist_elim
=>
x
.
do
2
rewrite
-
(
exist_intro
x
)
.
rewrite
P_split
{
1
}[
one_shot_own
_
_]
always_sep_dup
.
solve_sep_entails
.
Qed
.
Lemma
Q_res_join
γ
:
(
barrier_res
γ
Q1
★
barrier_res
γ
Q2
)
⊢
▷
barrier_res
γ
Q
.
Proof
.
rewrite
/
barrier_res
sep_exist_r
.
apply
exist_elim
=>
x1
.
rewrite
sep_exist_l
.
apply
exist_elim
=>
x2
.
rewrite
[
one_shot_own
γ
x1
]
always_sep_dup
.
to_front
[
one_shot_own
γ
x1
;
one_shot_own
γ
x2
]
.
rewrite
one_shot_agree
.
strip_later
.
rewrite
-
(
exist_intro
x1
)
-
Q_join
.
ecancel
[
one_shot_own
γ
_;
Q1
_]
.
eapply
(
eq_rewrite
x2
x1
(
λ
x
,
Q2
x
));
last
by
eauto
with
I
.
{
(* FIXME typeclass search should find this. *)
apply
cofe_mor_ne
.
}
rewrite
eq_sym
.
eauto
with
I
.
Qed
.
Lemma
client_spec
(
eM
eW1
eW2
:
expr
[])
(
eM'
eW1'
eW2'
:
expr
(
"b"
:
b
:
[]))
(
R
:
iProp
)
:
heapN
⊥
N
→
eM'
=
wexpr'
eM
→
eW1'
=
wexpr'
eW1
→
eW2'
=
wexpr'
eW2
→
R
⊢
({{
P'
}}
eM
{{
λ
_,
∃
x
,
P
x
}})
→
R
⊢
(
∀
x
,
{{
P1
x
}}
eW1
{{
λ
_,
Q1
x
}})
→
R
⊢
(
∀
x
,
{{
P2
x
}}
eW2
{{
λ
_,
Q2
x
}})
→
R
⊢
heap_ctx
heapN
→
R
⊢
P'
→
R
⊢
WP
client
eM'
eW1'
eW2'
{{
λ
_,
∃
γ
,
barrier_res
γ
Q
}}
.
Proof
.
intros
HN
->
->
->
HeM
HeW1
HeW2
Hheap
HP'
.
rewrite
-4
!
{
1
}[
R
](
idemp
(
∧
)
%
I
)
{
1
}
HeM
{
1
}
HeW1
{
1
}
HeW2
{
1
}
Hheap
{
1
}
HP'
!
always_and_sep_l
{
Hheap
}
/
client
.
to_front
[]
.
rewrite
one_shot_alloc
!
pvs_frame_r
!
sep_exist_r
.
apply
wp_strip_pvs
,
exist_elim
=>
γ
.
rewrite
{
1
}[
heap_ctx
_]
always_sep_dup
.
(
ewp
(
eapply
(
newbarrier_spec
heapN
N
(
barrier_res
γ
P
))));
last
done
.
cancel
[
heap_ctx
heapN
]
.
apply
forall_intro
=>
l
.
apply
wand_intro_r
.
set
(
workers_post
(
v
:
val
)
:=
(
barrier_res
γ
Q1
★
barrier_res
γ
Q2
)
%
I
)
.
wp_let
.
(
ewp
(
eapply
wp_par
with
(
Ψ1
:=
λ
_,
True
%
I
)
(
Ψ2
:=
workers_post
)));
last
first
.
{
done
.
}
(* FIXME why does this simple goal even appear? *)
rewrite
{
1
}[
heap_ctx
_]
always_sep_dup
.
cancel
[
heap_ctx
heapN
]
.
sep_split
left
:
[
one_shot_pending
γ
;
send
_
_
_
_
;
P'
;
{{
_
}}
eM
{{
_
}}]
%
I
.
{
(* Main thread. *)
wp_focus
eM
.
rewrite
/
ht
always_elim
impl_wand
wand_elim_r
!
wp_frame_l
.
apply
wp_mono
=>
v
.
wp_seq
.
rewrite
!
sep_exist_l
.
apply
exist_elim
=>
x
.
rewrite
(
one_shot_init
_
γ
x
)
!
pvs_frame_r
.
apply
wp_strip_pvs
.
ewp
(
eapply
signal_spec
)
.
ecancel
[
send
_
_
_
_]
.
by
rewrite
/
barrier_res
-
(
exist_intro
x
)
.
}
sep_split
right
:
[]
.
-
(* Worker threads. *)
rewrite
recv_mono
;
last
exact
:
P_res_split
.
rewrite
(
recv_split
_
_
⊤
)
//.
rewrite
?pvs_frame_r
!
pvs_frame_l
.
apply
wp_strip_pvs
.
(
ewp
(
eapply
wp_par
with
(
Ψ1
:=
λ
_,
barrier_res
γ
Q1
)
(
Ψ2
:=
λ
_,
barrier_res
γ
Q2
)));
last
first
.
{
done
.
}
ecancel
[
heap_ctx
_]
.
sep_split
left
:
[
recv
_
_
_
(
barrier_res
γ
P1
);
∀
_,
{{
_
}}
eW1
{{
_
}}]
%
I
.
{
eapply
worker_spec
;
eauto
with
I
.
}
sep_split
left
:
[
recv
_
_
_
(
barrier_res
γ
P2
);
∀
_,
{{
_
}}
eW2
{{
_
}}]
%
I
.
{
eapply
worker_spec
;
eauto
with
I
.
}
rewrite
/
workers_post
.
do
2
apply
forall_intro
=>_
.
(* FIXME: this should work: rewrite -later_intro. *)
apply
wand_intro_r
.
rewrite
-
later_intro
.
solve_sep_entails
.
-
(* Merging. *)
rewrite
/
workers_post
.
do
2
apply
forall_intro
=>_
.
apply
wand_intro_r
.
rewrite
!
left_id
Q_res_join
.
strip_later
.
by
rewrite
-
(
exist_intro
γ
)
.
Qed
.
End
proof
.
This diff is collapsed.
Click to expand it.
tests/one_shot.v
0 → 100644
+
154
−
0
View file @
74960dec
From
iris
.
algebra
Require
Import
one_shot
dec_agree
.
From
iris
.
program_logic
Require
Import
hoare
.
From
iris
.
heap_lang
Require
Import
heap
assert
wp_tactics
notation
.
Import
uPred
.
Definition
one_shot_example
:
val
:=
λ
:
<>
,
let
:
"x"
:=
ref
(
InjL
#
0
)
in
(
(* tryset *)
(
λ
:
"n"
,
CAS
'
"x"
(
InjL
#
0
)
(
InjR
'
"n"
)),
(* check *)
(
λ
:
<>
,
let
:
"y"
:=
!
'
"x"
in
λ
:
<>
,
match
:
'
"y"
with
InjL
<>
=>
#
()
|
InjR
"n"
=>
match
:
!
'
"x"
with
InjL
<>
=>
Assert
#
false
|
InjR
"m"
=>
Assert
(
'
"n"
=
'
"m"
)
end
end
))
.
Class
one_shotG
Σ
:=
OneShotG
{
one_shot_inG
:>
inG
heap_lang
Σ
(
one_shotR
(
dec_agreeR
Z
))
}
.
Definition
one_shotGF
:
gFunctorList
:=
[
GFunctor
(
constRF
(
one_shotR
(
dec_agreeR
Z
)))]
.
Instance
inGF_one_shotG
Σ
:
inGFs
heap_lang
Σ
one_shotGF
→
one_shotG
Σ
.
Proof
.
intros
[?
_];
split
;
apply
:
inGF_inG
.
Qed
.
Section
proof
.
Context
{
Σ
:
gFunctors
}
`{
!
heapG
Σ
,
!
one_shotG
Σ
}
.
Context
(
heapN
N
:
namespace
)
(
HN
:
heapN
⊥
N
)
.
Local
Notation
iProp
:=
(
iPropG
heap_lang
Σ
)
.
Definition
one_shot_inv
(
γ
:
gname
)
(
l
:
loc
)
:
iProp
:=
(
l
↦
InjLV
#
0
★
own
γ
OneShotPending
∨
∃
n
:
Z
,
l
↦
InjRV
#
n
★
own
γ
(
Shot
(
DecAgree
n
)))
%
I
.
Lemma
wp_one_shot
(
Φ
:
val
→
iProp
)
:
(
heap_ctx
heapN
★
∀
f1
f2
:
val
,
(
∀
n
:
Z
,
□
WP
f1
#
n
{{
λ
w
,
w
=
#
true
∨
w
=
#
false
}})
★
□
WP
f2
#
()
{{
λ
g
,
□
WP
g
#
()
{{
λ
_,
True
}}
}}
-★
Φ
(
f1
,
f2
)
%
V
)
⊢
WP
one_shot_example
#
()
{{
Φ
}}
.
Proof
.
wp_let
.
wp
eapply
wp_alloc
;
eauto
with
I
.
apply
forall_intro
=>
l
;
apply
wand_intro_l
.
eapply
sep_elim_True_l
;
first
by
apply
(
own_alloc
OneShotPending
)
.
rewrite
!
pvs_frame_r
;
apply
wp_strip_pvs
.
rewrite
!
sep_exist_r
;
apply
exist_elim
=>
γ
.
(* TODO: this is horrible *)
trans
(
heap_ctx
heapN
★
(|
==>
inv
N
(
one_shot_inv
γ
l
))
★
(
∀
f1
f2
:
val
,
(
∀
n
:
Z
,
□
WP
f1
#
n
{{
λ
w
,
w
=
#
true
∨
w
=
#
false
}})
★
□
WP
f2
#
()
{{
λ
g
,
□
WP
g
#
()
{{
λ
_,
True
}}
}}
-★
Φ
(
f1
,
f2
)
%
V
))
%
I
.
{
ecancel
[
heap_ctx
_;
∀
_,
_]
%
I
.
rewrite
-
inv_alloc
//
-
later_intro
.
apply
or_intro_l'
.
solve_sep_entails
.
}
rewrite
pvs_frame_r
pvs_frame_l
;
apply
wp_strip_pvs
;
wp_let
.
rewrite
!
assoc
2
!
forall_elim
;
eapply
wand_apply_r'
;
first
done
.
rewrite
(
always_sep_dup
(_
★
_));
apply
sep_mono
.
-
apply
forall_intro
=>
n
.
apply
:
always_intro
.
wp_let
.
eapply
(
wp_inv_timeless
_
_
_
(
one_shot_inv
γ
l
));
rewrite
/=
?to_of_val
;
eauto
10
with
I
.
rewrite
(
True_intro
(
inv
_
_))
right_id
.
apply
wand_intro_r
;
rewrite
sep_or_l
;
apply
or_elim
.
+
rewrite
-
wp_pvs
.
wp
eapply
wp_cas_suc
;
rewrite
/=
?to_of_val
;
eauto
with
I
ndisj
.
rewrite
(
True_intro
(
heap_ctx
_))
left_id
.
ecancel
[
l
↦
_]
%
I
;
apply
wand_intro_l
.
rewrite
(
own_update
);
(* FIXME: canonical structures are not working *)
last
by
apply
(
one_shot_update_shoot
(
DecAgree
n
:
dec_agreeR
_))
.
rewrite
pvs_frame_l
;
apply
pvs_mono
,
sep_intro_True_r
;
eauto
with
I
.
rewrite
/
one_shot_inv
-
or_intro_r
-
(
exist_intro
n
)
.
solve_sep_entails
.
+
rewrite
sep_exist_l
;
apply
exist_elim
=>
m
.
eapply
wp_cas_fail
with
(
v'
:=
InjRV
#
m
)
(
q
:=
1
%
Qp
);
rewrite
/=
?to_of_val
;
eauto
with
I
ndisj
;
strip_later
.
ecancel
[
l
↦
_]
%
I
;
apply
wand_intro_l
,
sep_intro_True_r
;
eauto
with
I
.
rewrite
/
one_shot_inv
-
or_intro_r
-
(
exist_intro
m
)
.
solve_sep_entails
.
-
apply
:
always_intro
.
wp_seq
.
wp_focus
(
Load
(
%
l
))
%
I
.
eapply
(
wp_inv_timeless
_
_
_
(
one_shot_inv
γ
l
));
rewrite
/=
?to_of_val
;
eauto
10
with
I
.
apply
wand_intro_r
.
trans
(
heap_ctx
heapN
★
inv
N
(
one_shot_inv
γ
l
)
★
∃
v
,
l
↦
v
★
((
v
=
InjLV
#
0
★
own
γ
OneShotPending
)
∨
∃
n
:
Z
,
v
=
InjRV
#
n
★
own
γ
(
Shot
(
DecAgree
n
))))
%
I
.
{
rewrite
assoc
.
apply
sep_mono_r
,
or_elim
.
+
rewrite
-
(
exist_intro
(
InjLV
#
0
))
.
rewrite
-
or_intro_l
const_equiv
//.
solve_sep_entails
.
+
apply
exist_elim
=>
n
.
rewrite
-
(
exist_intro
(
InjRV
#
n
))
-
(
exist_intro
n
)
.
apply
sep_mono_r
,
or_intro_r'
,
sep_intro_True_l
;
eauto
with
I
.
}
rewrite
!
sep_exist_l
;
apply
exist_elim
=>
w
.
eapply
wp_load
with
(
q
:=
1
%
Qp
)
(
v
:=
w
);
eauto
with
I
ndisj
.
rewrite
-
later_intro
;
cancel
[
l
↦
w
]
%
I
.
rewrite
-
later_intro
;
apply
wand_intro_l
.
trans
(
heap_ctx
heapN
★
inv
N
(
one_shot_inv
γ
l
)
★
one_shot_inv
γ
l
★
(
w
=
InjLV
#
0
∨
(
∃
n
:
Z
,
w
=
InjRV
#
n
★
own
γ
(
Shot
(
DecAgree
n
)))))
%
I
.
{
cancel
[
heap_ctx
heapN
]
.
rewrite
!
sep_or_l
;
apply
or_elim
.
+
rewrite
-
or_intro_l
.
ecancel
[
inv
_
_]
%
I
.
rewrite
[(_
★
_)
%
I
]
comm
-
assoc
.
apply
const_elim_sep_l
=>
->
.
rewrite
const_equiv
//
right_id
/
one_shot_inv
-
or_intro_l
.
solve_sep_entails
.
+
rewrite
-
or_intro_r
!
sep_exist_l
;
apply
exist_elim
=>
n
.
rewrite
-
(
exist_intro
n
)
.
ecancel
[
inv
_
_]
%
I
.
rewrite
[(_
★
_)
%
I
]
comm
-
assoc
.
apply
const_elim_sep_l
=>
->
.
rewrite
const_equiv
//
left_id
/
one_shot_inv
-
or_intro_r
.
rewrite
-
(
exist_intro
n
)
{
1
}(
always_sep_dup
(
own
_
_))
.
solve_sep_entails
.
}
cancel
[
one_shot_inv
γ
l
]
.
(* FIXME: why aren't laters stripped? *)
wp_let
.
rewrite
-
later_intro
.
apply
:
always_intro
.
wp_seq
.
rewrite
-
later_intro
.
rewrite
!
sep_or_l
;
apply
or_elim
.
{
rewrite
assoc
.
apply
const_elim_sep_r
=>
->
.
wp_case
;
wp_seq
;
eauto
with
I
.
}
rewrite
!
sep_exist_l
;
apply
exist_elim
=>
n
.
rewrite
[(
w
=_
★
_)
%
I
]
comm
!
assoc
;
apply
const_elim_sep_r
=>
->
.
(* FIXME: why do we need to fold? *)
wp_case
;
fold
of_val
.
wp_let
.
wp_focus
(
Load
(
%
l
))
%
I
.
eapply
(
wp_inv_timeless
_
_
_
(
one_shot_inv
γ
l
));
rewrite
/=
?to_of_val
;
eauto
10
with
I
.
rewrite
(
True_intro
(
inv
_
_))
right_id
.
apply
wand_intro_r
;
rewrite
sep_or_l
;
apply
or_elim
.
+
rewrite
(
True_intro
(
heap_ctx
_))
(
True_intro
(
l
↦
_))
!
left_id
.
rewrite
-
own_op
own_valid_l
one_shot_validI
/=
left_absorb
.
apply
False_elim
.
+
rewrite
!
sep_exist_l
;
apply
exist_elim
=>
m
.
eapply
wp_load
with
(
q
:=
1
%
Qp
)
(
v
:=
InjRV
#
m
);
eauto
with
I
ndisj
;
strip_later
.
cancel
[
l
↦
InjRV
#
m
]
%
I
.
apply
wand_intro_r
.
rewrite
(
True_intro
(
heap_ctx
heapN
))
left_id
.
rewrite
-
own_op
own_valid_l
one_shot_validI
Shot_op
/=
discrete_valid
.
rewrite
-
assoc
.
apply
const_elim_sep_l
=>
/
dec_agree_op_inv
[
->
]
.
rewrite
dec_agree_idemp
.
apply
sep_intro_True_r
.
{
rewrite
/
one_shot_inv
-
or_intro_r
-
(
exist_intro
m
)
.
solve_sep_entails
.
}
wp_case
;
fold
of_val
.
wp_let
.
rewrite
-
wp_assert'
.
wp_op
;
by
eauto
using
later_intro
with
I
.
Qed
.
Lemma
hoare_one_shot
(
Φ
:
val
→
iProp
)
:
heap_ctx
heapN
⊢
{{
True
}}
one_shot_example
#
()
{{
λ
ff
,
(
∀
n
:
Z
,
{{
True
}}
Fst
ff
#
n
{{
λ
w
,
w
=
#
true
∨
w
=
#
false
}})
★
{{
True
}}
Snd
ff
#
()
{{
λ
g
,
{{
True
}}
g
#
()
{{
λ
_,
True
}}
}}
}}
.
Proof
.
apply
:
always_intro
;
rewrite
left_id
-
wp_one_shot
/=.
cancel
[
heap_ctx
heapN
]
.
apply
forall_intro
=>
f1
;
apply
forall_intro
=>
f2
.
apply
wand_intro_l
;
rewrite
right_id
;
apply
sep_mono
.
-
apply
forall_mono
=>
n
.
apply
always_mono
;
rewrite
left_id
.
by
wp_proj
.
-
apply
always_mono
;
rewrite
left_id
.
wp_proj
.
apply
wp_mono
=>
v
.
by
apply
always_mono
;
rewrite
left_id
.
Qed
.
End
proof
.
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment