Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Terraform modules
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Simcha van Collem
Iris
Commits
6d147668
Commit
6d147668
authored
9 years ago
by
Ralf Jung
Browse files
Options
Downloads
Patches
Plain Diff
more flexible masks for sts_alloc and heap_alloc
parent
f931b131
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
heap_lang/heap.v
+6
-5
6 additions, 5 deletions
heap_lang/heap.v
program_logic/auth.v
+5
-4
5 additions, 4 deletions
program_logic/auth.v
program_logic/sts.v
+6
-4
6 additions, 4 deletions
program_logic/sts.v
with
17 additions
and
13 deletions
heap_lang/heap.v
+
6
−
5
View file @
6d147668
...
@@ -62,13 +62,14 @@ Section heap.
...
@@ -62,13 +62,14 @@ Section heap.
Qed
.
Qed
.
(** Allocation *)
(** Allocation *)
Lemma
heap_alloc
N
σ
:
Lemma
heap_alloc
E
N
σ
:
authG
heap_lang
Σ
heapRA
→
authG
heap_lang
Σ
heapRA
→
nclose
N
⊆
E
→
ownP
σ
⊑
pvs
N
N
(
∃
(_
:
heapG
Σ
),
heap_ctx
N
∧
Π
★
{
map
σ
}
heap_mapsto
)
.
ownP
σ
⊑
pvs
E
E
(
∃
(_
:
heapG
Σ
),
heap_ctx
N
∧
Π
★
{
map
σ
}
heap_mapsto
)
.
Proof
.
Proof
.
rewrite
-
{
1
}(
from_to_heap
σ
)
.
etransitivity
.
intros
.
rewrite
-
{
1
}(
from_to_heap
σ
)
.
etransitivity
.
{
rewrite
[
ownP
_]
later_intro
.
{
rewrite
[
ownP
_]
later_intro
.
apply
(
auth_alloc
(
ownP
∘
of_heap
)
N
(
to_heap
σ
)),
to_heap_valid
.
}
apply
(
auth_alloc
(
ownP
∘
of_heap
)
E
N
(
to_heap
σ
));
last
done
.
apply
to_heap_valid
.
}
apply
pvs_mono
,
exist_elim
=>
γ
.
apply
pvs_mono
,
exist_elim
=>
γ
.
rewrite
-
(
exist_intro
(
HeapG
_
_
γ
));
apply
and_mono_r
.
rewrite
-
(
exist_intro
(
HeapG
_
_
γ
));
apply
and_mono_r
.
induction
σ
as
[|
l
v
σ
Hl
IH
]
using
map_ind
.
induction
σ
as
[|
l
v
σ
Hl
IH
]
using
map_ind
.
...
...
This diff is collapsed.
Click to expand it.
program_logic/auth.v
+
5
−
4
View file @
6d147668
...
@@ -41,12 +41,13 @@ Section auth.
...
@@ -41,12 +41,13 @@ Section auth.
Lemma
auto_own_valid
γ
a
:
auth_own
γ
a
⊑
✓
a
.
Lemma
auto_own_valid
γ
a
:
auth_own
γ
a
⊑
✓
a
.
Proof
.
by
rewrite
/
auth_own
own_valid
auth_validI
.
Qed
.
Proof
.
by
rewrite
/
auth_own
own_valid
auth_validI
.
Qed
.
Lemma
auth_alloc
N
a
:
Lemma
auth_alloc
E
N
a
:
✓
a
→
▷
φ
a
⊑
pvs
N
N
(
∃
γ
,
auth_ctx
γ
N
φ
∧
auth_own
γ
a
)
.
✓
a
→
nclose
N
⊆
E
→
▷
φ
a
⊑
pvs
E
E
(
∃
γ
,
auth_ctx
γ
N
φ
∧
auth_own
γ
a
)
.
Proof
.
Proof
.
intros
Ha
.
eapply
sep_elim_True_r
.
intros
Ha
HN
.
eapply
sep_elim_True_r
.
{
by
eapply
(
own_alloc
(
Auth
(
Excl
a
)
a
)
N
)
.
}
{
by
eapply
(
own_alloc
(
Auth
(
Excl
a
)
a
)
N
)
.
}
rewrite
pvs_frame_l
.
apply
pvs_strip_pvs
.
rewrite
pvs_frame_l
.
rewrite
-
(
pvs_mask_weaken
N
E
)
//.
apply
pvs_strip_pvs
.
rewrite
sep_exist_l
.
apply
exist_elim
=>
γ
.
rewrite
-
(
exist_intro
γ
)
.
rewrite
sep_exist_l
.
apply
exist_elim
=>
γ
.
rewrite
-
(
exist_intro
γ
)
.
transitivity
(
▷
auth_inv
γ
φ
★
auth_own
γ
a
)
%
I
.
transitivity
(
▷
auth_inv
γ
φ
★
auth_own
γ
a
)
%
I
.
{
rewrite
/
auth_inv
-
(
exist_intro
a
)
later_sep
.
{
rewrite
/
auth_inv
-
(
exist_intro
a
)
later_sep
.
...
...
This diff is collapsed.
Click to expand it.
program_logic/sts.v
+
6
−
4
View file @
6d147668
...
@@ -63,13 +63,15 @@ Section sts.
...
@@ -63,13 +63,15 @@ Section sts.
sts_own
γ
s
T
⊑
pvs
E
E
(
sts_ownS
γ
S
T
)
.
sts_own
γ
s
T
⊑
pvs
E
E
(
sts_ownS
γ
S
T
)
.
Proof
.
intros
.
by
apply
own_update
,
sts_update_frag_up
.
Qed
.
Proof
.
intros
.
by
apply
own_update
,
sts_update_frag_up
.
Qed
.
Lemma
sts_alloc
N
s
:
Lemma
sts_alloc
E
N
s
:
▷
φ
s
⊑
pvs
N
N
(
∃
γ
,
sts_ctx
γ
N
φ
∧
sts_own
γ
s
(
⊤
∖
sts
.
tok
s
))
.
nclose
N
⊆
E
→
▷
φ
s
⊑
pvs
E
E
(
∃
γ
,
sts_ctx
γ
N
φ
∧
sts_own
γ
s
(
⊤
∖
sts
.
tok
s
))
.
Proof
.
Proof
.
eapply
sep_elim_True_r
.
intros
HN
.
eapply
sep_elim_True_r
.
{
apply
(
own_alloc
(
sts_auth
s
(
⊤
∖
sts
.
tok
s
))
N
)
.
{
apply
(
own_alloc
(
sts_auth
s
(
⊤
∖
sts
.
tok
s
))
N
)
.
apply
sts_auth_valid
;
solve_elem_of
.
}
apply
sts_auth_valid
;
solve_elem_of
.
}
rewrite
pvs_frame_l
.
apply
pvs_strip_pvs
.
rewrite
pvs_frame_l
.
rewrite
-
(
pvs_mask_weaken
N
E
)
//.
apply
pvs_strip_pvs
.
rewrite
sep_exist_l
.
apply
exist_elim
=>
γ
.
rewrite
-
(
exist_intro
γ
)
.
rewrite
sep_exist_l
.
apply
exist_elim
=>
γ
.
rewrite
-
(
exist_intro
γ
)
.
transitivity
(
▷
sts_inv
γ
φ
★
sts_own
γ
s
(
⊤
∖
sts
.
tok
s
))
%
I
.
transitivity
(
▷
sts_inv
γ
φ
★
sts_own
γ
s
(
⊤
∖
sts
.
tok
s
))
%
I
.
{
rewrite
/
sts_inv
-
(
exist_intro
s
)
later_sep
.
{
rewrite
/
sts_inv
-
(
exist_intro
s
)
later_sep
.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment