Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Terraform modules
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Simcha van Collem
Iris
Commits
662d20dc
Commit
662d20dc
authored
9 years ago
by
Ralf Jung
Browse files
Options
Downloads
Patches
Plain Diff
add bidirectional turnstile
parent
3cf0a5fc
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
docs/derived.tex
+3
-3
3 additions, 3 deletions
docs/derived.tex
docs/iris.sty
+1
-0
1 addition, 0 deletions
docs/iris.sty
docs/logic.tex
+24
-25
24 additions, 25 deletions
docs/logic.tex
with
28 additions
and
28 deletions
docs/derived.tex
+
3
−
3
View file @
662d20dc
...
...
@@ -8,13 +8,13 @@ We collect here some important and frequently used derived proof rules.
{
\prop
\Ra
\propB
\proves
\prop
\wand
\propB
}
\infer
{}
{
\prop
*
\Exists\var
.
\propB
\
Lra
\Exists\var
.
\prop
*
\propB
}
{
\prop
*
\Exists\var
.
\propB
\
provesIff
\Exists\var
.
\prop
*
\propB
}
\infer
{}
{
\prop
*
\Exists\var
.
\propB
\proves
\Exists\var
.
\prop
*
\propB
}
\infer
{}
{
\always
(
\prop*\propB
)
\
Lra
\always\prop
*
\always\propB
}
{
\always
(
\prop*\propB
)
\
provesIff
\always\prop
*
\always\propB
}
\infer
{}
{
\always
(
\prop
\Ra
\propB
)
\proves
\always\prop
\Ra
\always\propB
}
...
...
@@ -23,7 +23,7 @@ We collect here some important and frequently used derived proof rules.
{
\always
(
\prop
\wand
\propB
)
\proves
\always\prop
\wand
\always\propB
}
\infer
{}
{
\always
(
\prop
\wand
\propB
)
\
Lra
\always
(
\prop
\Ra
\propB
)
}
{
\always
(
\prop
\wand
\propB
)
\
provesIff
\always
(
\prop
\Ra
\propB
)
}
\infer
{}
{
\later
(
\prop
\Ra
\propB
)
\proves
\later\prop
\Ra
\later\propB
}
...
...
This diff is collapsed.
Click to expand it.
docs/iris.sty
+
1
−
0
View file @
662d20dc
...
...
@@ -184,6 +184,7 @@
\def\Lam
#1.
{
\lambda
#1.
\spac
}
%
\newcommand
{
\proves
}{
\vdash
}
\newcommand
{
\provesIff
}{
\mathrel
{
\dashv\vdash
}}
\newcommand
{
\wand
}{
\;
{{
\mbox
{
---
}}
\!\!
{
*
}}
\;
}
...
...
This diff is collapsed.
Click to expand it.
docs/logic.tex
+
24
−
25
View file @
662d20dc
...
...
@@ -303,8 +303,7 @@ In writing $\vctx, x:\type$, we presuppose that $x$ is not already declared in $
The judgment
$
\vctx
\mid
\pfctx
\proves
\prop
$
says that with free variables
$
\vctx
$
, proposition
$
\prop
$
holds whenever all assumptions
$
\pfctx
$
hold.
We implicitly assume that an arbitrary variable context,
$
\vctx
$
, is added to every constituent of the rules.
Furthermore, an arbitrary
\emph
{
boxed
}
assertion context
$
\always\pfctx
$
may be added to every constituent.
Axioms
$
\prop
\Ra
\propB
$
stand for judgments
$
\vctx
\mid
\cdot
\proves
\prop
\Ra
\propB
$
with no assumptions.
(Bi-implications are analogous.)
Axioms
$
\vctx
\mid
\prop
\provesIff
\propB
$
indicate that both
$
\vctx
\mid
\prop
\proves
\propB
$
and
$
\vctx
\mid
\propB
\proves
\prop
$
can be derived.
\judgment
{}{
\vctx
\mid
\pfctx
\proves
\prop
}
\paragraph
{
Laws of intuitionistic higher-order logic with equality.
}
...
...
@@ -395,9 +394,9 @@ This is entirely standard.
\paragraph
{
Laws of (affine) bunched implications.
}
\begin{mathpar}
\begin{array}
{
rMcMl
}
\TRUE
*
\prop
&
\
Lra
&
\prop
\\
\prop
*
\propB
&
\
Lra
&
\propB
*
\prop
\\
(
\prop
*
\propB
) *
\propC
&
\
Lra
&
\prop
* (
\propB
*
\propC
)
\TRUE
*
\prop
&
\
provesIff
&
\prop
\\
\prop
*
\propB
&
\
provesIff
&
\propB
*
\prop
\\
(
\prop
*
\propB
) *
\propC
&
\
provesIff
&
\prop
* (
\propB
*
\propC
)
\end{array}
\and
\infer
[$*$-mono]
...
...
@@ -413,14 +412,14 @@ This is entirely standard.
\paragraph
{
Laws for ghosts and physical resources.
}
\begin{mathpar}
\begin{array}
{
rMcMl
}
\ownGGhost
{
\melt
}
*
\ownGGhost
{
\meltB
}
&
\
Lra
&
\ownGGhost
{
\melt
\mtimes
\meltB
}
\\
\ownGGhost
{
\melt
}
&
\
Ra
&
\melt
\in
\mval
\\
\TRUE
&
\
Ra
&
\ownGGhost
{
\munit
}
\ownGGhost
{
\melt
}
*
\ownGGhost
{
\meltB
}
&
\
provesIff
&
\ownGGhost
{
\melt
\mtimes
\meltB
}
\\
\ownGGhost
{
\melt
}
&
\
provesIff
&
\melt
\in
\mval
\\
\TRUE
&
\
proves
&
\ownGGhost
{
\munit
}
\end{array}
\and
\and
\begin{array}
{
c
}
\ownPhys
{
\state
}
*
\ownPhys
{
\state
'
}
\
Ra
\FALSE
\ownPhys
{
\state
}
*
\ownPhys
{
\state
'
}
\
proves
\FALSE
\end{array}
\end{mathpar}
...
...
@@ -439,14 +438,14 @@ This is entirely standard.
{
\later
{
\Exists
x:
\type
.
\prop
}
\proves
\Exists
x:
\type
.
\later\prop
}
\\\\
\begin{array}
[c]
{
rMcMl
}
\later
{
(
\prop
\wedge
\propB
)
}
&
\
Lra
&
\later
{
\prop
}
\wedge
\later
{
\propB
}
\\
\later
{
(
\prop
\vee
\propB
)
}
&
\
Lra
&
\later
{
\prop
}
\vee
\later
{
\propB
}
\\
\later
{
(
\prop
\wedge
\propB
)
}
&
\
provesIff
&
\later
{
\prop
}
\wedge
\later
{
\propB
}
\\
\later
{
(
\prop
\vee
\propB
)
}
&
\
provesIff
&
\later
{
\prop
}
\vee
\later
{
\propB
}
\\
\end{array}
\and
\begin{array}
[c]
{
rMcMl
}
\later
{
\All
x.
\prop
}
&
\
Lra
&
\All
x.
\later\prop
\\
\Exists
x.
\later\prop
&
\
Ra
&
\later
{
\Exists
x.
\prop
}
\\
\later
{
(
\prop
*
\propB
)
}
&
\
Lra
&
\later\prop
*
\later\propB
\later
{
\All
x.
\prop
}
&
\
provesIff
&
\All
x.
\later\prop
\\
\Exists
x.
\later\prop
&
\
proves
&
\later
{
\Exists
x.
\prop
}
\\
\later
{
(
\prop
*
\propB
)
}
&
\
provesIff
&
\later\prop
*
\later\propB
\end{array}
\end{mathpar}
...
...
@@ -487,26 +486,26 @@ This is entirely standard.
{
\always
{
\pfctx
}
\proves
\always
{
\prop
}}
\and
\infer
[$\always$E]
{}
{
\always
{
\prop
}
\
Ra
\prop
}
{
\always
{
\prop
}
\
proves
\prop
}
\and
\begin{array}
[c]
{
rMcMl
}
\always
{
(
\prop
*
\propB
)
}
&
\
Ra
&
\always
{
(
\prop
\land
\propB
)
}
\\
\always
{
\prop
}
*
\propB
&
\
Ra
&
\always
{
\prop
}
\land
\propB
\\
\always
{
\later\prop
}
&
\
Lra
&
\later\always
{
\prop
}
\\
\always
{
(
\prop
*
\propB
)
}
&
\
proves
&
\always
{
(
\prop
\land
\propB
)
}
\\
\always
{
\prop
}
*
\propB
&
\
proves
&
\always
{
\prop
}
\land
\propB
\\
\always
{
\later\prop
}
&
\
provesIff
&
\later\always
{
\prop
}
\\
\end{array}
\and
\begin{array}
[c]
{
rMcMl
}
\always
{
(
\prop
\land
\propB
)
}
&
\
Lra
&
\always
{
\prop
}
\land
\always
{
\propB
}
\\
\always
{
(
\prop
\lor
\propB
)
}
&
\
Lra
&
\always
{
\prop
}
\lor
\always
{
\propB
}
\\
\always
{
\All
x.
\prop
}
&
\
Lra
&
\All
x.
\always
{
\prop
}
\\
\always
{
\Exists
x.
\prop
}
&
\
Lra
&
\Exists
x.
\always
{
\prop
}
\\
\always
{
(
\prop
\land
\propB
)
}
&
\
provesIff
&
\always
{
\prop
}
\land
\always
{
\propB
}
\\
\always
{
(
\prop
\lor
\propB
)
}
&
\
provesIff
&
\always
{
\prop
}
\lor
\always
{
\propB
}
\\
\always
{
\All
x.
\prop
}
&
\
provesIff
&
\All
x.
\always
{
\prop
}
\\
\always
{
\Exists
x.
\prop
}
&
\
provesIff
&
\Exists
x.
\always
{
\prop
}
\\
\end{array}
\and
{
\term
=
_
\type
\term
'
\
Ra
\always
\term
=
_
\type
\term
'
}
{
\term
=
_
\type
\term
'
\
proves
\always
\term
=
_
\type
\term
'
}
\and
{
\knowInv\iname\prop
\
Ra
\always
\knowInv\iname\prop
}
{
\knowInv\iname\prop
\
proves
\always
\knowInv\iname\prop
}
\and
{
\ownGGhost
{
\mcore\melt
}
\
Ra
\always
\ownGGhost
{
\mcore\melt
}}
{
\ownGGhost
{
\mcore\melt
}
\
proves
\always
\ownGGhost
{
\mcore\melt
}}
\end{mathpar}
\paragraph
{
Laws of primitive view shifts.
}
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment