Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Terraform modules
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Simcha van Collem
Iris
Commits
624f2010
Commit
624f2010
authored
8 years ago
by
Robbert Krebbers
Browse files
Options
Downloads
Patches
Plain Diff
Some more FSA lemmas.
parent
30a309d3
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
program_logic/pviewshifts.v
+13
-0
13 additions, 0 deletions
program_logic/pviewshifts.v
with
13 additions
and
0 deletions
program_logic/pviewshifts.v
+
13
−
0
View file @
624f2010
...
@@ -217,6 +217,7 @@ Class FrameShiftAssertion {Λ Σ A} (fsaV : Prop) (fsa : FSA Λ Σ A) := {
...
@@ -217,6 +217,7 @@ Class FrameShiftAssertion {Λ Σ A} (fsaV : Prop) (fsa : FSA Λ Σ A) := {
Section
fsa
.
Section
fsa
.
Context
{
Λ
Σ
A
}
(
fsa
:
FSA
Λ
Σ
A
)
`{
!
FrameShiftAssertion
fsaV
fsa
}
.
Context
{
Λ
Σ
A
}
(
fsa
:
FSA
Λ
Σ
A
)
`{
!
FrameShiftAssertion
fsaV
fsa
}
.
Implicit
Types
Φ
Ψ
:
A
→
iProp
Λ
Σ
.
Implicit
Types
Φ
Ψ
:
A
→
iProp
Λ
Σ
.
Import
uPred
.
Lemma
fsa_mono
E
Φ
Ψ
:
(
∀
a
,
Φ
a
⊢
Ψ
a
)
→
fsa
E
Φ
⊢
fsa
E
Ψ
.
Lemma
fsa_mono
E
Φ
Ψ
:
(
∀
a
,
Φ
a
⊢
Ψ
a
)
→
fsa
E
Φ
⊢
fsa
E
Ψ
.
Proof
.
apply
fsa_mask_frame_mono
;
auto
.
Qed
.
Proof
.
apply
fsa_mask_frame_mono
;
auto
.
Qed
.
...
@@ -231,8 +232,20 @@ Proof.
...
@@ -231,8 +232,20 @@ Proof.
Qed
.
Qed
.
Lemma
fsa_pvs_fsa
E
Φ
:
(|
=
{
E
}=>
fsa
E
Φ
)
⊣⊢
fsa
E
Φ
.
Lemma
fsa_pvs_fsa
E
Φ
:
(|
=
{
E
}=>
fsa
E
Φ
)
⊣⊢
fsa
E
Φ
.
Proof
.
apply
(
anti_symm
(
⊢
));
[
by
apply
fsa_strip_pvs
|
apply
pvs_intro
]
.
Qed
.
Proof
.
apply
(
anti_symm
(
⊢
));
[
by
apply
fsa_strip_pvs
|
apply
pvs_intro
]
.
Qed
.
Lemma
pvs_fsa_fsa
E
Φ
:
fsa
E
(
λ
a
,
|
=
{
E
}=>
Φ
a
)
⊣⊢
fsa
E
Φ
.
Proof
.
apply
(
anti_symm
(
⊢
));
[|
apply
fsa_mono
=>
a
;
apply
pvs_intro
]
.
by
rewrite
(
pvs_intro
E
(
fsa
E
_))
fsa_trans3
.
Qed
.
Lemma
fsa_mono_pvs
E
Φ
Ψ
:
(
∀
a
,
Φ
a
⊢
(|
=
{
E
}=>
Ψ
a
))
→
fsa
E
Φ
⊢
fsa
E
Ψ
.
Lemma
fsa_mono_pvs
E
Φ
Ψ
:
(
∀
a
,
Φ
a
⊢
(|
=
{
E
}=>
Ψ
a
))
→
fsa
E
Φ
⊢
fsa
E
Ψ
.
Proof
.
intros
.
rewrite
-
[
fsa
E
Ψ
]
fsa_trans3
-
pvs_intro
.
by
apply
fsa_mono
.
Qed
.
Proof
.
intros
.
rewrite
-
[
fsa
E
Ψ
]
fsa_trans3
-
pvs_intro
.
by
apply
fsa_mono
.
Qed
.
Lemma
fsa_wand_l
E
Φ
Ψ
:
((
∀
a
,
Φ
a
-★
Ψ
a
)
★
fsa
E
Φ
)
⊢
(
fsa
E
Ψ
)
.
Proof
.
rewrite
fsa_frame_l
.
apply
fsa_mono
=>
a
.
by
rewrite
(
forall_elim
a
)
wand_elim_l
.
Qed
.
Lemma
fsa_wand_r
E
Φ
Ψ
:
(
fsa
E
Φ
★
∀
a
,
Φ
a
-★
Ψ
a
)
⊢
(
fsa
E
Ψ
)
.
Proof
.
by
rewrite
(
comm
_
(
fsa
_
_))
fsa_wand_l
.
Qed
.
End
fsa
.
End
fsa
.
Definition
pvs_fsa
{
Λ
Σ
}
:
FSA
Λ
Σ
()
:=
λ
E
Φ
,
(|
=
{
E
}=>
Φ
())
%
I
.
Definition
pvs_fsa
{
Λ
Σ
}
:
FSA
Λ
Σ
()
:=
λ
E
Φ
,
(|
=
{
E
}=>
Φ
())
%
I
.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment