Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Terraform modules
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Simcha van Collem
Iris
Commits
30a309d3
Commit
30a309d3
authored
8 years ago
by
Robbert Krebbers
Browse files
Options
Downloads
Patches
Plain Diff
Declare relations on proofmode environments to enable setoid rewriting.
parent
3b9a9685
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
proofmode/coq_tactics.v
+39
-0
39 additions, 0 deletions
proofmode/coq_tactics.v
proofmode/environments.v
+29
-0
29 additions, 0 deletions
proofmode/environments.v
with
68 additions
and
0 deletions
proofmode/coq_tactics.v
+
39
−
0
View file @
30a309d3
...
...
@@ -26,6 +26,12 @@ Record envs_wf {M} (Δ : envs M) := {
Coercion
of_envs
{
M
}
(
Δ
:
envs
M
)
:
uPred
M
:=
(
■
envs_wf
Δ
★
□
Π
∧
env_persistent
Δ
★
Π
★
env_spatial
Δ
)
%
I
.
Instance
:
Params
(
@
of_envs
)
1
.
Record
envs_Forall2
{
M
}
(
R
:
relation
(
uPred
M
))
(
Δ1
Δ2
:
envs
M
)
:
Prop
:=
{
env_persistent_Forall2
:
env_Forall2
R
(
env_persistent
Δ1
)
(
env_persistent
Δ2
);
env_spatial_Forall2
:
env_Forall2
R
(
env_spatial
Δ1
)
(
env_spatial
Δ2
)
}
.
Instance
envs_dom
{
M
}
:
Dom
(
envs
M
)
stringset
:=
λ
Δ
,
dom
stringset
(
env_persistent
Δ
)
∪
dom
stringset
(
env_spatial
Δ
)
.
...
...
@@ -252,6 +258,39 @@ Lemma envs_persistent_persistent Δ : envs_persistent Δ = true → PersistentP
Proof
.
intros
;
destruct
Δ
as
[?
[]];
simplify_eq
/=
;
apply
_
.
Qed
.
Hint
Immediate
envs_persistent_persistent
:
typeclass_instances
.
Global
Instance
envs_Forall2_refl
(
R
:
relation
(
uPred
M
))
:
Reflexive
R
→
Reflexive
(
envs_Forall2
R
)
.
Proof
.
by
constructor
.
Qed
.
Global
Instance
envs_Forall2_sym
(
R
:
relation
(
uPred
M
))
:
Symmetric
R
→
Symmetric
(
envs_Forall2
R
)
.
Proof
.
intros
???
[??];
by
constructor
.
Qed
.
Global
Instance
envs_Forall2_trans
(
R
:
relation
(
uPred
M
))
:
Transitive
R
→
Transitive
(
envs_Forall2
R
)
.
Proof
.
intros
???
[??]
[??]
[??];
constructor
;
etrans
;
eauto
.
Qed
.
Global
Instance
envs_Forall2_antisymm
(
R
R'
:
relation
(
uPred
M
))
:
AntiSymm
R
R'
→
AntiSymm
(
envs_Forall2
R
)
(
envs_Forall2
R'
)
.
Proof
.
intros
???
[??]
[??];
constructor
;
by
eapply
(
anti_symm
_)
.
Qed
.
Lemma
envs_Forall2_impl
(
R
R'
:
relation
(
uPred
M
))
Δ1
Δ2
:
envs_Forall2
R
Δ1
Δ2
→
(
∀
P
Q
,
R
P
Q
→
R'
P
Q
)
→
envs_Forall2
R'
Δ1
Δ2
.
Proof
.
intros
[??]
?;
constructor
;
eauto
using
env_Forall2_impl
.
Qed
.
Global
Instance
of_envs_mono
:
Proper
(
envs_Forall2
(
⊢
)
==>
(
⊢
))
(
@
of_envs
M
)
.
Proof
.
intros
[
Γp1
Γs1
]
[
Γp2
Γs2
]
[
Hp
Hs
];
unfold
of_envs
;
simpl
in
*.
apply
const_elim_sep_l
=>
Hwf
.
apply
sep_intro_True_l
.
-
destruct
Hwf
;
apply
const_intro
;
constructor
;
naive_solver
eauto
using
env_Forall2_wf
,
env_Forall2_fresh
.
-
by
repeat
f_equiv
.
Qed
.
Global
Instance
of_envs_proper
:
Proper
(
envs_Forall2
(
⊣⊢
)
==>
(
⊣⊢
))
(
@
of_envs
M
)
.
Proof
.
intros
Δ1
Δ2
?;
apply
(
anti_symm
(
⊢
));
apply
of_envs_mono
;
eapply
envs_Forall2_impl
;
[|
|
symmetry
|];
eauto
using
equiv_entails
.
Qed
.
Global
Instance
Envs_mono
(
R
:
relation
(
uPred
M
))
:
Proper
(
env_Forall2
R
==>
env_Forall2
R
==>
envs_Forall2
R
)
(
@
Envs
M
)
.
Proof
.
by
constructor
.
Qed
.
(** * Adequacy *)
Lemma
tac_adequate
P
:
Envs
Enil
Enil
⊢
P
→
True
⊢
P
.
Proof
.
...
...
This diff is collapsed.
Click to expand it.
proofmode/environments.v
+
29
−
0
View file @
30a309d3
...
...
@@ -7,6 +7,8 @@ Inductive env (A : Type) : Type :=
|
Esnoc
:
env
A
→
string
→
A
→
env
A
.
Arguments
Enil
{_}
.
Arguments
Esnoc
{_}
_
_
%
string
_
.
Instance
:
Params
(
@
Enil
)
1
.
Instance
:
Params
(
@
Esnoc
)
1
.
Local
Notation
"x ← y ; z"
:=
(
match
y
with
Some
x
=>
z
|
None
=>
None
end
)
.
Local
Notation
"' ( x1 , x2 ) ← y ; z"
:=
...
...
@@ -28,6 +30,7 @@ Inductive env_wf {A} : env A → Prop :=
Fixpoint
env_to_list
{
A
}
(
E
:
env
A
)
:
list
A
:=
match
E
with
Enil
=>
[]
|
Esnoc
Γ
_
x
=>
x
::
env_to_list
Γ
end
.
Coercion
env_to_list
:
env
>->
list
.
Instance
:
Params
(
@
env_to_list
)
1
.
Instance
env_dom
{
A
}
:
Dom
(
env
A
)
stringset
:=
fix
go
Γ
:=
let
_
:
Dom
_
_
:=
@
go
in
...
...
@@ -201,6 +204,32 @@ Proof. intros. apply (env_split_go_wf Enil Γ Γ1 Γ2 js); eauto. Qed.
Lemma
env_split_perm
Γ
Γ1
Γ2
js
:
env_split
js
Γ
=
Some
(
Γ1
,
Γ2
)
→
Γ
≡
ₚ
Γ1
++
Γ2
.
Proof
.
apply
env_split_go_perm
.
Qed
.
Global
Instance
env_Forall2_refl
(
P
:
relation
A
)
:
Reflexive
P
→
Reflexive
(
env_Forall2
P
)
.
Proof
.
intros
?
Γ
.
induction
Γ
;
constructor
;
auto
.
Qed
.
Global
Instance
env_Forall2_sym
(
P
:
relation
A
)
:
Symmetric
P
→
Symmetric
(
env_Forall2
P
)
.
Proof
.
induction
2
;
constructor
;
auto
.
Qed
.
Global
Instance
env_Forall2_trans
(
P
:
relation
A
)
:
Transitive
P
→
Transitive
(
env_Forall2
P
)
.
Proof
.
intros
?
Γ1
Γ2
Γ3
HΓ
;
revert
Γ3
.
induction
HΓ
;
inversion_clear
1
;
constructor
;
eauto
.
Qed
.
Global
Instance
env_Forall2_antisymm
(
P
Q
:
relation
A
)
:
AntiSymm
P
Q
→
AntiSymm
(
env_Forall2
P
)
(
env_Forall2
Q
)
.
Proof
.
induction
2
;
inversion_clear
1
;
constructor
;
auto
.
Qed
.
Lemma
env_Forall2_impl
{
B
}
(
P
Q
:
A
→
B
→
Prop
)
Γ
Σ
:
env_Forall2
P
Γ
Σ
→
(
∀
x
y
,
P
x
y
→
Q
x
y
)
→
env_Forall2
Q
Γ
Σ
.
Proof
.
induction
1
;
constructor
;
eauto
.
Qed
.
Global
Instance
Esnoc_proper
(
P
:
relation
A
)
:
Proper
(
env_Forall2
P
==>
(
=
)
==>
P
==>
env_Forall2
P
)
Esnoc
.
Proof
.
intros
Γ1
Γ2
HΓ
i
?
<-
;
by
constructor
.
Qed
.
Global
Instance
env_to_list_proper
(
P
:
relation
A
)
:
Proper
(
env_Forall2
P
==>
Forall2
P
)
env_to_list
.
Proof
.
induction
1
;
constructor
;
auto
.
Qed
.
Lemma
env_Forall2_fresh
{
B
}
(
P
:
A
→
B
→
Prop
)
Γ
Σ
i
:
env_Forall2
P
Γ
Σ
→
Γ
!!
i
=
None
→
Σ
!!
i
=
None
.
Proof
.
by
induction
1
;
simplify
.
Qed
.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment