Skip to content
Snippets Groups Projects
Commit 1d3902ca authored by Robbert Krebbers's avatar Robbert Krebbers
Browse files

Misc tweaks.

parent 86967a81
No related branches found
No related tags found
No related merge requests found
...@@ -991,28 +991,25 @@ End limit_preserving. ...@@ -991,28 +991,25 @@ End limit_preserving.
Section sigma. Section sigma.
Context {A : ofeT} {P : A Prop}. Context {A : ofeT} {P : A Prop}.
Implicit Types x : sig P.
(* TODO: Find a better place for this Equiv instance. It also (* TODO: Find a better place for this Equiv instance. It also
should not depend on A being an OFE. *) should not depend on A being an OFE. *)
Instance sig_equiv : Equiv (sig P) := Instance sig_equiv : Equiv (sig P) := λ x1 x2, `x1 `x2.
λ x1 x2, (proj1_sig x1) (proj1_sig x2). Instance sig_dist : Dist (sig P) := λ n x1 x2, `x1 {n} `x2.
Instance sig_dist : Dist (sig P) := Lemma exist_ne n a1 a2 (H1 : P a1) (H2 : P a2) :
λ n x1 x2, (proj1_sig x1) {n} (proj1_sig x2). a1 {n} a2 a1 H1 {n} a2 H2.
Lemma exist_ne : Proof. done. Qed.
n x1 x2, x1 {n} x2
(H1 : P x1) (H2 : P x2), (exist P x1 H1) {n} (exist P x2 H2).
Proof. intros n ?? Hx ??. exact Hx. Qed.
Global Instance proj1_sig_ne : Proper (dist n ==> dist n) (@proj1_sig _ P). Global Instance proj1_sig_ne : Proper (dist n ==> dist n) (@proj1_sig _ P).
Proof. intros n [] [] ?. done. Qed. Proof. by intros n [a Ha] [b Hb] ?. Qed.
Definition sig_ofe_mixin : OfeMixin (sig P). Definition sig_ofe_mixin : OfeMixin (sig P).
Proof. Proof.
split. split.
- intros x y. unfold dist, sig_dist, equiv, sig_equiv. - intros [a ?] [b ?]. rewrite /dist /sig_dist /equiv /sig_equiv /=.
destruct x, y. apply equiv_dist. apply equiv_dist.
- unfold dist, sig_dist. intros n. - intros n. rewrite /dist /sig_dist.
split; [intros [] | intros [] [] | intros [] [] []]; simpl; try done. split; [intros []| intros [] []| intros [] [] []]=> //= -> //.
intros. by etrans. - intros n [a ?] [b ?]. rewrite /dist /sig_dist /=. apply dist_S.
- intros n [??] [??]. unfold dist, sig_dist. simpl. apply dist_S.
Qed. Qed.
Canonical Structure sigC : ofeT := OfeT (sig P) sig_ofe_mixin. Canonical Structure sigC : ofeT := OfeT (sig P) sig_ofe_mixin.
...@@ -1020,13 +1017,11 @@ Section sigma. ...@@ -1020,13 +1017,11 @@ Section sigma.
suddenly becomes explicit...? *) suddenly becomes explicit...? *)
Program Definition sig_compl `{LimitPreserving _ P} : Compl sigC := Program Definition sig_compl `{LimitPreserving _ P} : Compl sigC :=
λ c, exist P (compl (chain_map proj1_sig c)) _. λ c, exist P (compl (chain_map proj1_sig c)) _.
Next Obligation. Next Obligation. intros ? Hlim c. apply Hlim=> n /=. by destruct (c n). Qed.
intros ? Hlim c. apply Hlim. move=>n /=. destruct (c n). done. Program Definition sig_cofe `{Cofe A, !LimitPreserving P} : Cofe sigC :=
Qed.
Program Definition sig_cofe `{LimitPreserving _ P} : Cofe sigC :=
{| compl := sig_compl |}. {| compl := sig_compl |}.
Next Obligation. Next Obligation.
intros ? Hlim n c. apply (conv_compl n (chain_map proj1_sig c)). intros ?? n c. apply (conv_compl n (chain_map proj1_sig c)).
Qed. Qed.
Global Instance sig_timeless (x : sig P) : Global Instance sig_timeless (x : sig P) :
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment