Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Terraform modules
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Simcha van Collem
Iris
Commits
1d3902ca
Commit
1d3902ca
authored
8 years ago
by
Robbert Krebbers
Browse files
Options
Downloads
Patches
Plain Diff
Misc tweaks.
parent
86967a81
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
theories/algebra/ofe.v
+15
-20
15 additions, 20 deletions
theories/algebra/ofe.v
with
15 additions
and
20 deletions
theories/algebra/ofe.v
+
15
−
20
View file @
1d3902ca
...
@@ -991,28 +991,25 @@ End limit_preserving.
...
@@ -991,28 +991,25 @@ End limit_preserving.
Section
sigma
.
Section
sigma
.
Context
{
A
:
ofeT
}
{
P
:
A
→
Prop
}
.
Context
{
A
:
ofeT
}
{
P
:
A
→
Prop
}
.
Implicit
Types
x
:
sig
P
.
(* TODO: Find a better place for this Equiv instance. It also
(* TODO: Find a better place for this Equiv instance. It also
should not depend on A being an OFE. *)
should not depend on A being an OFE. *)
Instance
sig_equiv
:
Equiv
(
sig
P
)
:=
Instance
sig_equiv
:
Equiv
(
sig
P
)
:=
λ
x1
x2
,
`
x1
≡
`
x2
.
λ
x1
x2
,
(
proj1_sig
x1
)
≡
(
proj1_sig
x2
)
.
Instance
sig_dist
:
Dist
(
sig
P
)
:=
λ
n
x1
x2
,
`
x1
≡
{
n
}
≡
`
x2
.
Instance
sig_dist
:
Dist
(
sig
P
)
:=
Lemma
exist_ne
n
a1
a2
(
H1
:
P
a1
)
(
H2
:
P
a2
)
:
λ
n
x1
x2
,
(
proj1_sig
x1
)
≡
{
n
}
≡
(
proj1_sig
x2
)
.
a1
≡
{
n
}
≡
a2
→
a1
↾
H1
≡
{
n
}
≡
a2
↾
H2
.
Lemma
exist_ne
:
Proof
.
done
.
Qed
.
∀
n
x1
x2
,
x1
≡
{
n
}
≡
x2
→
∀
(
H1
:
P
x1
)
(
H2
:
P
x2
),
(
exist
P
x1
H1
)
≡
{
n
}
≡
(
exist
P
x2
H2
)
.
Proof
.
intros
n
??
Hx
??
.
exact
Hx
.
Qed
.
Global
Instance
proj1_sig_ne
:
Proper
(
dist
n
==>
dist
n
)
(
@
proj1_sig
_
P
)
.
Global
Instance
proj1_sig_ne
:
Proper
(
dist
n
==>
dist
n
)
(
@
proj1_sig
_
P
)
.
Proof
.
intros
n
[
]
[]
?
.
done
.
Qed
.
Proof
.
by
intros
n
[
a
Ha
]
[
b
Hb
]
?
.
Qed
.
Definition
sig_ofe_mixin
:
OfeMixin
(
sig
P
)
.
Definition
sig_ofe_mixin
:
OfeMixin
(
sig
P
)
.
Proof
.
Proof
.
split
.
split
.
-
intros
x
y
.
unfold
dist
,
sig_dist
,
equiv
,
sig_equiv
.
-
intros
[
a
?]
[
b
?]
.
rewrite
/
dist
/
sig_dist
/
equiv
/
sig_equiv
/=.
destruct
x
,
y
.
apply
equiv_dist
.
apply
equiv_dist
.
-
unfold
dist
,
sig_dist
.
intros
n
.
-
intros
n
.
rewrite
/
dist
/
sig_dist
.
split
;
[
intros
[]
|
intros
[]
[]
|
intros
[]
[]
[]];
simpl
;
try
done
.
split
;
[
intros
[]|
intros
[]
[]|
intros
[]
[]
[]]=>
//=
->
//.
intros
.
by
etrans
.
-
intros
n
[
a
?]
[
b
?]
.
rewrite
/
dist
/
sig_dist
/=.
apply
dist_S
.
-
intros
n
[??]
[??]
.
unfold
dist
,
sig_dist
.
simpl
.
apply
dist_S
.
Qed
.
Qed
.
Canonical
Structure
sigC
:
ofeT
:=
OfeT
(
sig
P
)
sig_ofe_mixin
.
Canonical
Structure
sigC
:
ofeT
:=
OfeT
(
sig
P
)
sig_ofe_mixin
.
...
@@ -1020,13 +1017,11 @@ Section sigma.
...
@@ -1020,13 +1017,11 @@ Section sigma.
suddenly becomes explicit...? *)
suddenly becomes explicit...? *)
Program
Definition
sig_compl
`{
LimitPreserving
_
P
}
:
Compl
sigC
:=
Program
Definition
sig_compl
`{
LimitPreserving
_
P
}
:
Compl
sigC
:=
λ
c
,
exist
P
(
compl
(
chain_map
proj1_sig
c
))
_
.
λ
c
,
exist
P
(
compl
(
chain_map
proj1_sig
c
))
_
.
Next
Obligation
.
Next
Obligation
.
intros
?
Hlim
c
.
apply
Hlim
=>
n
/=.
by
destruct
(
c
n
)
.
Qed
.
intros
?
Hlim
c
.
apply
Hlim
.
move
=>
n
/=.
destruct
(
c
n
)
.
done
.
Program
Definition
sig_cofe
`{
Cofe
A
,
!
LimitPreserving
P
}
:
Cofe
sigC
:=
Qed
.
Program
Definition
sig_cofe
`{
LimitPreserving
_
P
}
:
Cofe
sigC
:=
{|
compl
:=
sig_compl
|}
.
{|
compl
:=
sig_compl
|}
.
Next
Obligation
.
Next
Obligation
.
intros
?
Hlim
n
c
.
apply
(
conv_compl
n
(
chain_map
proj1_sig
c
))
.
intros
?
?
n
c
.
apply
(
conv_compl
n
(
chain_map
proj1_sig
c
))
.
Qed
.
Qed
.
Global
Instance
sig_timeless
(
x
:
sig
P
)
:
Global
Instance
sig_timeless
(
x
:
sig
P
)
:
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment