Skip to content
Snippets Groups Projects
Commit 17f06665 authored by Robbert Krebbers's avatar Robbert Krebbers
Browse files

Change auth_fsa to have an existential quantifier for the update.

This works better with class interference.
parent 6e275ac6
Branches
Tags
No related merge requests found
......@@ -77,23 +77,23 @@ Section heap.
P wp E (Alloc e) Q.
Proof.
rewrite /heap_ctx /heap_own. intros HN Hval Hctx HP.
set (LU (l : loc) := local_update_op (A:=heapRA) ({[ l Excl v ]})).
eapply (auth_fsa (heap_inv HeapI) (wp_fsa _) _ (LU := LU)); simpl.
{ by eauto. } { by eauto. } { by eauto. }
eapply (auth_fsa (heap_inv HeapI) (wp_fsa _)); simpl; eauto.
rewrite HP=>{HP Hctx HN}. apply sep_mono; first done.
apply forall_intro=>hf. apply wand_intro_l. rewrite /heap_inv.
rewrite -assoc. apply const_elim_sep_l=>Hv /=.
rewrite {1}[(ownP _)%I]pvs_timeless !pvs_frame_r. apply wp_strip_pvs.
rewrite -wp_alloc_pst; first (apply sep_mono; first done); try done; [].
apply later_mono, forall_intro=>l. rewrite (forall_elim l). apply wand_intro_l.
rewrite -(exist_intro l) !left_id. rewrite always_and_sep_l -assoc.
rewrite -(exist_intro (op {[ l Excl v ]})).
repeat erewrite <-exist_intro by apply _; simpl.
rewrite always_and_sep_l -assoc.
apply const_elim_sep_l=>Hfresh.
assert (σ !! l = None) as Hfresh_σ.
{ move: Hfresh (Hv 0%nat l). rewrite /from_heap /to_heap lookup_omap.
rewrite lookup_op !lookup_fmap.
case _:(σ !! l)=>[v'|]/=; case _:(hf !! l)=>[[?||]|]/=; done. }
rewrite const_equiv // const_equiv; last first.
{ move=>n l'. move:(Hv n l') Hfresh.
{ split; first done. move=>n l'. move:(Hv n l') Hfresh.
rewrite /from_heap /to_heap !lookup_omap !lookup_op !lookup_fmap !Hfresh_σ /=.
destruct (decide (l=l')).
- subst l'. rewrite lookup_singleton !Hfresh_σ.
......@@ -116,14 +116,13 @@ Section heap.
Lemma wp_alloc N E γ e v P Q :
nclose N E to_val e = Some v
P heap_ctx HeapI γ N
P ( ( l, heap_mapsto HeapI γ l v -★ Q (LocV l)))
P ( l, heap_mapsto HeapI γ l v -★ Q (LocV l))
P wp E (Alloc e) Q.
Proof.
intros HN ? Hctx HP. eapply sep_elim_True_r.
{ eapply (auth_empty γ). }
{ eapply (auth_empty E γ). }
rewrite pvs_frame_l. apply wp_strip_pvs.
eapply wp_alloc_heap with (σ:=); try done; [|].
{ eauto with I. }
eapply wp_alloc_heap with N γ v; eauto with I.
rewrite HP comm. apply sep_mono.
- rewrite /heap_own. f_equiv. apply: map_eq=>l. by rewrite lookup_fmap !lookup_empty.
- apply later_mono, forall_mono=>l. apply wand_mono; last done. eauto with I.
......@@ -137,7 +136,7 @@ Section heap.
P wp E (Load (Loc l)) Q.
Proof.
rewrite /heap_ctx /heap_own. intros Hl HN Hctx HP.
eapply (auth_fsa (heap_inv HeapI) (wp_fsa _) (λ _:(), id)); simpl; eauto.
eapply (auth_fsa' (heap_inv HeapI) (wp_fsa _) id); simpl; eauto.
rewrite HP=>{HP Hctx HN}. apply sep_mono; first done.
apply forall_intro=>hf. apply wand_intro_l. rewrite /heap_inv.
rewrite -assoc. apply const_elim_sep_l=>Hv /=.
......@@ -146,7 +145,7 @@ Section heap.
{ move: (Hv 0%nat l). rewrite lookup_omap lookup_op lookup_fmap Hl /=.
case _:(hf !! l)=>[[?||]|]; by auto. }
apply later_mono, wand_intro_l.
rewrite -(exist_intro ()) left_id const_equiv // left_id.
rewrite left_id const_equiv // left_id.
by rewrite -later_intro.
Qed.
......@@ -168,8 +167,7 @@ Section heap.
P wp E (Store (Loc l) e) Q.
Proof.
rewrite /heap_ctx /heap_own. intros Hl Hval HN Hctx HP.
eapply (auth_fsa (heap_inv HeapI) (wp_fsa _)
(λ _:(), alter (λ _, Excl v) l)); simpl; eauto.
eapply (auth_fsa' (heap_inv HeapI) (wp_fsa _) (alter (λ _, Excl v) l)); simpl; eauto.
rewrite HP=>{HP Hctx HN}. apply sep_mono; first done.
apply forall_intro=>hf. apply wand_intro_l. rewrite /heap_inv.
rewrite -assoc. apply const_elim_sep_l=>Hv /=.
......@@ -178,7 +176,7 @@ Section heap.
{ move: (Hv 0%nat l). rewrite lookup_omap lookup_op lookup_fmap Hl /=.
case _:(hf !! l)=>[[?||]|]; by auto. }
apply later_mono, wand_intro_l.
rewrite -(exist_intro ()) const_equiv //; last first.
rewrite const_equiv //; last first.
(* TODO I think there are some general fin_map lemmas hiding in here. *)
{ split.
- exists (Excl v'). by rewrite lookup_fmap Hl.
......@@ -222,7 +220,7 @@ Section heap.
P wp E (Cas (Loc l) e1 e2) Q.
Proof.
rewrite /heap_ctx /heap_own. intros He1 He2 Hl Hne HN Hctx HP.
eapply (auth_fsa (heap_inv HeapI) (wp_fsa _) (λ _:(), id)); simpl; eauto.
eapply (auth_fsa' (heap_inv HeapI) (wp_fsa _) id); simpl; eauto.
{ split_ands; eexists; eauto. }
rewrite HP=>{HP Hctx HN}. apply sep_mono; first done.
apply forall_intro=>hf. apply wand_intro_l. rewrite /heap_inv.
......@@ -232,7 +230,7 @@ Section heap.
{ move: (Hv 0%nat l). rewrite lookup_omap lookup_op lookup_fmap Hl /=.
case _:(hf !! l)=>[[?||]|]; by auto. }
apply later_mono, wand_intro_l.
rewrite -(exist_intro ()) left_id const_equiv // left_id.
rewrite left_id const_equiv // left_id.
by rewrite -later_intro.
Qed.
......@@ -255,7 +253,7 @@ Section heap.
P wp E (Cas (Loc l) e1 e2) Q.
Proof.
rewrite /heap_ctx /heap_own. intros Hv1 Hv2 Hl HN Hctx HP.
eapply (auth_fsa (heap_inv HeapI) (wp_fsa _) (λ _:(), alter (λ _, Excl v2) l)); simpl; eauto.
eapply (auth_fsa' (heap_inv HeapI) (wp_fsa _) (alter (λ _, Excl v2) l)); simpl; eauto.
{ split_ands; eexists; eauto. }
rewrite HP=>{HP Hctx HN}. apply sep_mono; first done.
apply forall_intro=>hf. apply wand_intro_l. rewrite /heap_inv.
......@@ -265,7 +263,7 @@ Section heap.
{ move: (Hv 0%nat l). rewrite lookup_omap lookup_op lookup_fmap Hl /=.
case _:(hf !! l)=>[[?||]|]; by auto. }
apply later_mono, wand_intro_l.
rewrite -(exist_intro ()) const_equiv //; last first.
rewrite const_equiv //; last first.
(* TODO I think there are some general fin_map lemmas hiding in here. *)
{ split.
- exists (Excl v1). by rewrite lookup_fmap Hl.
......
......@@ -11,7 +11,8 @@ Class AuthInG Λ Σ (i : gid) (A : cmraT) `{Empty A} := {
(* TODO: Once we switched to RAs, it is no longer necessary to remember that a is
constantly valid. *)
Definition auth_inv {Λ Σ A} (i : gid) `{AuthInG Λ Σ i A}
(γ : gname) (φ : A iPropG Λ Σ) : iPropG Λ Σ := ( a, (■✓a own i γ ( a)) φ a)%I.
(γ : gname) (φ : A iPropG Λ Σ) : iPropG Λ Σ :=
( a, ( a own i γ ( a)) φ a)%I.
Definition auth_own {Λ Σ A} (i : gid) `{AuthInG Λ Σ i A}
(γ : gname) (a : A) : iPropG Λ Σ := own i γ ( a).
Definition auth_ctx {Λ Σ A} (i : gid) `{AuthInG Λ Σ i A}
......@@ -29,6 +30,10 @@ Section auth.
Implicit Types a b : A.
Implicit Types γ : gname.
Lemma auto_own_op γ a b :
auth_own AuthI γ (a b) (auth_own AuthI γ a auth_own AuthI γ b)%I.
Proof. by rewrite /auth_own -own_op auth_frag_op. Qed.
Lemma auth_alloc N a :
a φ a pvs N N ( γ, auth_ctx AuthI γ N φ auth_own AuthI γ a).
Proof.
......@@ -45,12 +50,12 @@ Section auth.
by rewrite always_and_sep_l.
Qed.
Lemma auth_empty γ E : True pvs E E (auth_own AuthI γ ).
Lemma auth_empty E γ : True pvs E E (auth_own AuthI γ ).
Proof. by rewrite own_update_empty /auth_own. Qed.
Lemma auth_opened E a γ :
Lemma auth_opened E γ a :
( auth_inv AuthI γ φ auth_own AuthI γ a)
pvs E E ( a', (a a') φ (a a') own AuthI γ ( (a a') a)).
pvs E E ( a', (a a') φ (a a') own AuthI γ ( (a a') a)).
Proof.
rewrite /auth_inv. rewrite later_exist sep_exist_r. apply exist_elim=>b.
rewrite later_sep [((_ _))%I]pvs_timeless !pvs_frame_r. apply pvs_mono.
......@@ -59,8 +64,7 @@ Section auth.
rewrite own_valid_r auth_validI /= and_elim_l sep_exist_l sep_exist_r /=.
apply exist_elim=>a'.
rewrite left_id -(exist_intro a').
apply (eq_rewrite b (a a')
(λ x, ■✓x φ x own AuthI γ ( x a))%I).
apply (eq_rewrite b (a a') (λ x, ■✓x φ x own AuthI γ ( x a))%I).
{ by move=>n ? ? /timeless_iff ->. }
{ by eauto with I. }
rewrite const_equiv // left_id comm.
......@@ -68,7 +72,7 @@ Section auth.
by rewrite sep_elim_l.
Qed.
Lemma auth_closing E `{!LocalUpdate Lv L} a a' γ :
Lemma auth_closing `{!LocalUpdate Lv L} E γ a a' :
Lv a (L a a')
( φ (L a a') own AuthI γ ( (a a') a))
pvs E E ( auth_inv AuthI γ φ auth_own AuthI γ (L a)).
......@@ -80,36 +84,55 @@ Section auth.
by apply own_update, (auth_local_update_l L).
Qed.
Context {V} (fsa : FSA Λ (globalF Σ) V) `{!FrameShiftAssertion fsaV fsa}.
(* Notice how the user has to prove that `b⋅a'` is valid at all
step-indices. However, since A is timeless, that should not be
a restriction.
"I" here is an index type, so that the proof can still have some influence on
which concrete action is executed *after* it saw the full, authoritative state. *)
Lemma auth_fsa {B I} (fsa : FSA Λ (globalF Σ) B) `{!FrameShiftAssertion fsaV fsa}
L {Lv} {LU : i:I, LocalUpdate (Lv i) (L i)} N E P (Q : B iPropG Λ Σ) γ a :
a restriction. *)
Lemma auth_fsa E N P (Q : V iPropG Λ Σ) γ a :
fsaV
nclose N E
P auth_ctx AuthI γ N φ
P (auth_own AuthI γ a ( a',
P (auth_own AuthI γ a a',
(a a') φ (a a') -★
fsa (E nclose N) (λ x,
i, (Lv i a (L i aa')) φ (L i a a')
(auth_own AuthI γ (L i a) -★ Q x))))
fsa (E nclose N) (λ x, L Lv (Hup : LocalUpdate Lv L),
(Lv a (L a a')) φ (L a a')
(auth_own AuthI γ (L a) -★ Q x)))
P fsa E Q.
Proof.
rewrite /auth_ctx=>? HN Hinv Hinner.
eapply (inv_fsa fsa); eauto. rewrite Hinner=>{Hinner Hinv P}.
apply wand_intro_l.
rewrite assoc auth_opened !pvs_frame_r !sep_exist_r.
apply wand_intro_l. rewrite assoc.
rewrite (auth_opened (E N)) !pvs_frame_r !sep_exist_r.
apply (fsa_strip_pvs fsa). apply exist_elim=>a'.
rewrite (forall_elim a'). rewrite [(▷_ _)%I]comm.
(* Getting this wand eliminated is really annoying. *)
rewrite [(■_ _)%I]comm -!assoc [(φ _ _ _)%I]assoc [(φ _ _)%I]comm.
rewrite wand_elim_r fsa_frame_l.
apply (fsa_mono_pvs fsa)=> x. rewrite sep_exist_l. apply exist_elim=>i.
apply (fsa_mono_pvs fsa)=> b.
rewrite sep_exist_l; apply exist_elim=> L.
rewrite sep_exist_l; apply exist_elim=> Lv.
rewrite sep_exist_l; apply exist_elim=> ?.
rewrite comm -!assoc. apply const_elim_sep_l=>-[HL Hv].
rewrite assoc [(_ (_ -★ _))%I]comm -assoc.
rewrite auth_closing //; []. erewrite pvs_frame_l. apply pvs_mono.
rewrite (auth_closing (E N)) //; [].
rewrite pvs_frame_l. apply pvs_mono.
by rewrite assoc [(_ ▷_)%I]comm -assoc wand_elim_l.
Qed.
Lemma auth_fsa' L `{!LocalUpdate Lv L} E N P (Q: V iPropG Λ Σ) γ a :
fsaV
nclose N E
P auth_ctx AuthI γ N φ
P (auth_own AuthI γ a ( a',
(a a') φ (a a') -★
fsa (E nclose N) (λ x,
(Lv a (L a a')) φ (L a a')
(auth_own AuthI γ (L a) -★ Q x))))
P fsa E Q.
Proof.
intros ??? HP. eapply auth_fsa with N γ a; eauto.
rewrite HP; apply sep_mono; first done; apply forall_mono=> a'.
apply wand_mono; first done. apply (fsa_mono fsa)=> b.
rewrite -(exist_intro L). by repeat erewrite <-exist_intro by apply _.
Qed.
End auth.
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment