Skip to content
Snippets Groups Projects
Commit 1476960a authored by Ralf Jung's avatar Ralf Jung
Browse files

complete recv_split!

This is still a rather horrible proof, though. More work to be done.
parent fa2b3d9d
No related branches found
No related tags found
No related merge requests found
...@@ -155,7 +155,7 @@ Section proof. ...@@ -155,7 +155,7 @@ Section proof.
rewrite -(exist_intro (<[i1:=R1]> (<[i2:=R2]> Ψ))). rewrite -(exist_intro (<[i1:=R1]> (<[i2:=R2]> Ψ))).
rewrite [(Π{set _} (λ _, saved_prop_own _ _))%I](big_sepS_delete _ I i) //. rewrite [(Π{set _} (λ _, saved_prop_own _ _))%I](big_sepS_delete _ I i) //.
rewrite !assoc [(_ (_ -★ _))%I]comm !assoc [(_ _)%I]comm. rewrite !assoc [(_ (_ -★ _))%I]comm !assoc [(_ _)%I]comm.
rewrite !assoc [(_ saved_prop_own i _)%I]comm !assoc [(_ saved_prop_own i _)%I]comm -!assoc. rewrite !assoc [(_ _ i _)%I]comm !assoc [(_ _ i _)%I]comm -!assoc.
rewrite 3!assoc. apply sep_mono. rewrite 3!assoc. apply sep_mono.
- rewrite saved_prop_agree. u_strip_later. - rewrite saved_prop_agree. u_strip_later.
apply wand_intro_l. rewrite [(_ (_ -★ Π{set _} _))%I]comm !assoc wand_elim_r. apply wand_intro_l. rewrite [(_ (_ -★ Π{set _} _))%I]comm !assoc wand_elim_r.
...@@ -183,7 +183,29 @@ Section proof. ...@@ -183,7 +183,29 @@ Section proof.
rewrite fn_lookup_insert_ne; last naive_solver. rewrite fn_lookup_insert_ne; last naive_solver.
rewrite fn_lookup_insert_ne; last naive_solver. rewrite fn_lookup_insert_ne; last naive_solver.
done. done.
Qed. Qed.
Lemma ress_split i i1 i2 Q R1 R2 I :
i I i1 I i2 I i1 i2
(saved_prop_own i2 R2 saved_prop_own i1 R1 saved_prop_own i Q
(Q -★ R1 R2) ress I)
ress ({[i1]} ({[i2]} (I {[i]}))).
Proof.
intros. rewrite /ress.
rewrite [(Π{set _} _)%I](big_sepS_delete _ I i) // !assoc !sep_exist_l !sep_exist_r.
apply exist_elim=>R.
rewrite big_sepS_insert; last set_solver.
rewrite big_sepS_insert; last set_solver.
rewrite -(exist_intro R1) -(exist_intro R2) [(_ i2 _ _)%I]comm -!assoc.
apply sep_mono_r. rewrite !assoc. apply sep_mono_l.
rewrite [( _ _ i2 _)%I]comm -!assoc. apply sep_mono_r.
rewrite !assoc [(_ _ i R)%I]comm !assoc saved_prop_agree.
rewrite [( _ _)%I]comm -!assoc. eapply wand_apply_l.
{ rewrite <-later_wand, <-later_intro. done. }
{ by rewrite later_sep. }
u_strip_later.
apply: (eq_rewrite R Q (λ x, x)%I); eauto with I.
Qed.
Lemma newchan_spec (P : iProp) (Φ : val iProp) : Lemma newchan_spec (P : iProp) (Φ : val iProp) :
(heap_ctx heapN l, recv l P send l P -★ Φ (LocV l)) (heap_ctx heapN l, recv l P send l P -★ Φ (LocV l))
...@@ -378,17 +400,17 @@ Section proof. ...@@ -378,17 +400,17 @@ Section proof.
match goal with | |- _ ?G => rewrite [G]lock end. match goal with | |- _ ?G => rewrite [G]lock end.
rewrite {1}[saved_prop_own i1 _]always_sep_dup. rewrite {1}[saved_prop_own i1 _]always_sep_dup.
rewrite {1}[saved_prop_own i2 _]always_sep_dup. rewrite {1}[saved_prop_own i2 _]always_sep_dup.
rewrite !assoc [(_ saved_prop_own i1 _)%I]comm. rewrite !assoc [(_ _ i1 _)%I]comm.
rewrite !assoc [(_ saved_prop_own i _)%I]comm. rewrite !assoc [(_ _ i _)%I]comm.
rewrite !assoc [(_ (l _))%I]comm. rewrite !assoc [(_ (l _))%I]comm.
rewrite !assoc [(_ (waiting _ _))%I]comm. rewrite !assoc [(_ (waiting _ _))%I]comm.
rewrite !assoc [(_ (Q -★ _))%I]comm -!assoc 5!assoc. rewrite !assoc [(_ (Q -★ _))%I]comm -!assoc 5!assoc.
unlock. apply sep_mono. unlock. apply sep_mono.
+ (* This should really all be handled automatically. *) + (* This should really all be handled automatically. *)
rewrite !assoc [(_ (l _))%I]comm -!assoc. apply sep_mono_r. rewrite !assoc [(_ (l _))%I]comm -!assoc. apply sep_mono_r.
rewrite !assoc [(_ saved_prop_own i2 _)%I]comm -!assoc. apply sep_mono_r. rewrite !assoc [(_ _ i2 _)%I]comm -!assoc. apply sep_mono_r.
rewrite !assoc [(_ saved_prop_own i1 _)%I]comm -!assoc. apply sep_mono_r. rewrite !assoc [(_ _ i1 _)%I]comm -!assoc. apply sep_mono_r.
rewrite !assoc [(_ saved_prop_own i _)%I]comm -!assoc. apply sep_mono_r. rewrite !assoc [(_ _ i _)%I]comm -!assoc. apply sep_mono_r.
done. done.
+ apply wand_intro_l. rewrite !assoc. eapply pvs_wand_r. rewrite /recv. + apply wand_intro_l. rewrite !assoc. eapply pvs_wand_r. rewrite /recv.
rewrite -(exist_intro γ) -(exist_intro P) -(exist_intro R1) -(exist_intro i1). rewrite -(exist_intro γ) -(exist_intro P) -(exist_intro R1) -(exist_intro i1).
...@@ -410,9 +432,67 @@ Section proof. ...@@ -410,9 +432,67 @@ Section proof.
{ rewrite -later_intro. apply wand_intro_l. by rewrite right_id. } { rewrite -later_intro. apply wand_intro_l. by rewrite right_id. }
apply sep_intro_True_r; first done. apply sep_intro_True_r; first done.
{ rewrite -later_intro. apply wand_intro_l. by rewrite right_id. } { rewrite -later_intro. apply wand_intro_l. by rewrite right_id. }
(* Case II: High state *) (* Case II: High state. TODO: Lots of this script is just copy-n-paste of the previous one.
- Some of that ist because stuff should be more trivial than it is (like sts_ownS_op
Abort. having a too strong precondition, see the TODO over there); some of that
is because the goals a fairly simioar in structure, and the proof scripts
are mostlx concerned with manually managaing the structure (assoc, comm, dup) of
the context. *)
- rewrite -(exist_intro (State High ({[i1]} ({[i2]} (I {[i]}))))).
rewrite -(exist_intro ({[Change i1 ]} {[ Change i2 ]})).
rewrite const_equiv; last first.
(* This is exactly the same proof as above. Really, this should all be automated to be simple...
but if we can't get that, at least factor it out as a lemma? *)
{ apply rtc_once. constructor; first constructor; rewrite /= /tok /=; first set_solver.
(* This gets annoying... and I think I can see a pattern with all these proofs. Automatable? *)
- apply elem_of_equiv=>t. destruct t; last set_solver.
rewrite !mkSet_elem_of /change_tokens /=.
rewrite !elem_of_union !elem_of_difference !elem_of_singleton.
naive_solver.
- apply elem_of_equiv=>t. destruct t as [j|]; last set_solver.
rewrite !mkSet_elem_of /change_tokens /=.
rewrite !elem_of_union !elem_of_difference !elem_of_singleton.
destruct (decide (i1 = j)); first naive_solver.
destruct (decide (i2 = j)); first naive_solver.
destruct (decide (i = j)); naive_solver. }
rewrite left_id -later_intro {1 3}/barrier_inv.
rewrite -(ress_split _ _ _ Q R1 R2); [|done..].
match goal with | |- _ ?G => rewrite [G]lock end.
rewrite {1}[saved_prop_own i1 _]always_sep_dup.
rewrite {1}[saved_prop_own i2 _]always_sep_dup.
rewrite !assoc [(_ _ i1 _)%I]comm.
rewrite !assoc [(_ _ i _)%I]comm.
rewrite !assoc [(_ (l _))%I]comm.
rewrite !assoc [(_ (ress _))%I]comm.
rewrite !assoc [(_ (Q -★ _))%I]comm -!assoc 5!assoc.
unlock. apply sep_mono.
+ (* This should really all be handled automatically. *)
rewrite !assoc [(_ (l _))%I]comm -!assoc. apply sep_mono_r.
rewrite !assoc [(_ _ i2 _)%I]comm -!assoc. apply sep_mono_r.
rewrite !assoc [(_ _ i1 _)%I]comm -!assoc. apply sep_mono_r.
rewrite !assoc [(_ _ i _)%I]comm -!assoc. apply sep_mono_r.
done.
+ apply wand_intro_l. rewrite !assoc. eapply pvs_wand_r. rewrite /recv.
rewrite -(exist_intro γ) -(exist_intro P) -(exist_intro R1) -(exist_intro i1).
rewrite -(exist_intro γ) -(exist_intro P) -(exist_intro R2) -(exist_intro i2).
do 2 rewrite !(assoc ()%I) [(_ sts_ownS _ _ _)%I]comm.
rewrite -!assoc. rewrite [(sts_ownS _ _ _ _ _)%I]assoc -pvs_frame_r.
apply sep_mono.
* rewrite -sts_ownS_op; [|set_solver|by eauto..].
apply sts_own_weaken; first done.
{ rewrite !mkSet_elem_of /=. set_solver+. }
apply sts.closed_op; [by eauto..|set_solver|].
apply (non_empty_inhabited (State High ({[i1]} ({[i2]} (I {[i]}))))).
rewrite !mkSet_elem_of /=. set_solver+.
* rewrite {1}[heap_ctx _]always_sep_dup !assoc [(_ heap_ctx _)%I]comm -!assoc. apply sep_mono_r.
rewrite !assoc ![(_ heap_ctx _)%I]comm -!assoc. apply sep_mono_r.
rewrite {1}[sts_ctx _ _ _]always_sep_dup !assoc [(_ sts_ctx _ _ _)%I]comm -!assoc. apply sep_mono_r.
rewrite !assoc ![(_ sts_ctx _ _ _)%I]comm -!assoc. apply sep_mono_r.
rewrite comm. apply sep_mono_r. apply sep_intro_True_l.
{ rewrite -later_intro. apply wand_intro_l. by rewrite right_id. }
apply sep_intro_True_r; first done.
{ rewrite -later_intro. apply wand_intro_l. by rewrite right_id. }
Qed.
Lemma recv_strengthen l P1 P2 : Lemma recv_strengthen l P1 P2 :
(P1 -★ P2) (recv l P1 -★ recv l P2). (P1 -★ P2) (recv l P1 -★ recv l P2).
...@@ -455,8 +535,9 @@ Section spec. ...@@ -455,8 +535,9 @@ Section spec.
by rewrite right_id. by rewrite right_id.
- intros. apply ht_alt. rewrite -wait_spec; last done. - intros. apply ht_alt. rewrite -wait_spec; last done.
apply sep_intro_True_r; first done. apply wand_intro_l. eauto with I. apply sep_intro_True_r; first done. apply wand_intro_l. eauto with I.
- admit. - intros. apply ht_alt. rewrite -recv_split.
apply sep_intro_True_r; first done. apply wand_intro_l. eauto with I.
- intros. apply recv_strengthen. - intros. apply recv_strengthen.
Abort. Qed.
End spec. End spec.
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment