Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Terraform modules
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Simcha van Collem
Iris
Commits
042e24dc
Commit
042e24dc
authored
9 years ago
by
Ralf Jung
Browse files
Options
Downloads
Patches
Plain Diff
prove 'strong' allocation of ghost state, with more control over the name that has been picked
parent
22cf8bd9
No related branches found
No related tags found
No related merge requests found
Changes
4
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
algebra/fin_maps.v
+12
-6
12 additions, 6 deletions
algebra/fin_maps.v
program_logic/auth.v
+8
-6
8 additions, 6 deletions
program_logic/auth.v
program_logic/ghost_ownership.v
+10
-5
10 additions, 5 deletions
program_logic/ghost_ownership.v
program_logic/saved_prop.v
+4
-0
4 additions, 0 deletions
program_logic/saved_prop.v
with
34 additions
and
17 deletions
algebra/fin_maps.v
+
12
−
6
View file @
042e24dc
...
...
@@ -295,16 +295,22 @@ Proof. eauto using map_singleton_updateP_empty. Qed.
Section
freshness
.
Context
`{
Fresh
K
(
gset
K
),
!
FreshSpec
K
(
gset
K
)}
.
Lemma
map_updateP_alloc
(
Q
:
gmap
K
A
→
Prop
)
m
x
:
✓
x
→
(
∀
i
,
m
!!
i
=
None
→
Q
(
<
[
i
:=
x
]
>
m
))
→
m
~~>:
Q
.
Lemma
map_updateP_alloc
_strong
(
Q
:
gmap
K
A
→
Prop
)
(
I
:
gset
K
)
m
x
:
✓
x
→
(
∀
i
,
m
!!
i
=
None
→
i
∉
I
→
Q
(
<
[
i
:=
x
]
>
m
))
→
m
~~>:
Q
.
Proof
.
intros
?
HQ
mf
n
Hm
.
set
(
i
:=
fresh
(
dom
(
gset
K
)
(
m
⋅
mf
)))
.
assert
(
i
∉
dom
(
gset
K
)
m
∧
i
∉
dom
(
gset
K
)
mf
)
as
[?
?
]
.
{
rewrite
-
not_elem_of_union
-
map_dom_op
;
apply
is_fresh
.
}
exists
(
<
[
i
:=
x
]
>
m
)
;
split
;
first
by
apply
HQ
,
not_elem_of_dom
.
intros
?
HQ
mf
n
Hm
.
set
(
i
:=
fresh
(
I
∪
dom
(
gset
K
)
(
m
⋅
mf
)))
.
assert
(
i
∉
I
∧
i
∉
dom
(
gset
K
)
m
∧
i
∉
dom
(
gset
K
)
mf
)
as
[?
[??]
]
.
{
rewrite
-
not_elem_of_union
-
map_dom_op
-
not_elem_of_union
;
apply
is_fresh
.
}
exists
(
<
[
i
:=
x
]
>
m
)
.
split
;
first
by
(
apply
HQ
;
last
done
;
apply
not_elem_of_dom
)
.
rewrite
-
map_insert_op_None
;
last
by
apply
not_elem_of_dom
.
by
apply
map_insert_validN
;
[
apply
cmra_valid_validN
|]
.
Qed
.
Lemma
map_updateP_alloc
(
Q
:
gmap
K
A
→
Prop
)
m
x
:
✓
x
→
(
∀
i
,
m
!!
i
=
None
→
Q
(
<
[
i
:=
x
]
>
m
))
→
m
~~>:
Q
.
Proof
.
move
=>??
.
eapply
map_updateP_alloc_strong
with
(
I
:=
∅
);
by
eauto
.
Qed
.
Lemma
map_updateP_alloc_strong'
m
x
(
I
:
gset
K
)
:
✓
x
→
m
~~>:
λ
m'
,
∃
i
,
i
∉
I
∧
m'
=
<
[
i
:=
x
]
>
m
∧
m
!!
i
=
None
.
Proof
.
eauto
using
map_updateP_alloc_strong
.
Qed
.
Lemma
map_updateP_alloc'
m
x
:
✓
x
→
m
~~>:
λ
m'
,
∃
i
,
m'
=
<
[
i
:=
x
]
>
m
∧
m
!!
i
=
None
.
Proof
.
eauto
using
map_updateP_alloc
.
Qed
.
...
...
This diff is collapsed.
Click to expand it.
program_logic/auth.v
+
8
−
6
View file @
042e24dc
...
...
@@ -82,17 +82,19 @@ Section auth.
(* Notice how the user has to prove that `b⋅a'` is valid at all
step-indices. However, since A is timeless, that should not be
a restriction. *)
Lemma
auth_fsa
{
B
C
}
(
fsa
:
FSA
Λ
(
globalF
Σ
)
B
)
`{
!
FrameShiftAssertion
fsaV
fsa
}
L
{
Lv
}
{
LU
:
∀
c
:
C
,
LocalUpdate
(
Lv
c
)
(
L
c
)}
N
E
P
(
Q
:
B
→
iPropG
Λ
Σ
)
γ
a
:
a restriction.
"I" here is an index type, so that the proof can still have some influence on
which concrete action is executed *after* it saw the full, authoritative state. *)
Lemma
auth_fsa
{
B
I
}
(
fsa
:
FSA
Λ
(
globalF
Σ
)
B
)
`{
!
FrameShiftAssertion
fsaV
fsa
}
L
{
Lv
}
{
LU
:
∀
i
:
I
,
LocalUpdate
(
Lv
i
)
(
L
i
)}
N
E
P
(
Q
:
B
→
iPropG
Λ
Σ
)
γ
a
:
fsaV
→
nclose
N
⊆
E
→
P
⊑
auth_ctx
AuthI
γ
N
φ
→
P
⊑
(
auth_own
AuthI
γ
a
★
(
∀
a'
,
■
✓
(
a
⋅
a'
)
★
▷
φ
(
a
⋅
a'
)
-★
fsa
(
E
∖
nclose
N
)
(
λ
x
,
∃
c
,
■
(
Lv
c
a
∧
✓
(
L
c
a
⋅
a'
))
★
▷
φ
(
L
c
a
⋅
a'
)
★
(
auth_own
AuthI
γ
(
L
c
a
)
-★
Q
x
))))
→
∃
i
,
■
(
Lv
i
a
∧
✓
(
L
i
a
⋅
a'
))
★
▷
φ
(
L
i
a
⋅
a'
)
★
(
auth_own
AuthI
γ
(
L
i
a
)
-★
Q
x
))))
→
P
⊑
fsa
E
Q
.
Proof
.
rewrite
/
auth_ctx
=>?
HN
Hinv
Hinner
.
...
...
@@ -104,7 +106,7 @@ Section auth.
(* Getting this wand eliminated is really annoying. *)
rewrite
[(
■_
★
_)
%
I
]
comm
-!
assoc
[(
▷
φ
_
★
_
★
_)
%
I
]
assoc
[(
▷
φ
_
★
_)
%
I
]
comm
.
rewrite
wand_elim_r
fsa_frame_l
.
apply
(
fsa_mono_pvs
fsa
)=>
x
.
rewrite
sep_exist_l
.
apply
exist_elim
=>
c
.
apply
(
fsa_mono_pvs
fsa
)=>
x
.
rewrite
sep_exist_l
.
apply
exist_elim
=>
i
.
rewrite
comm
-!
assoc
.
apply
const_elim_sep_l
=>
-
[
HL
Hv
]
.
rewrite
assoc
[(_
★
(_
-★
_))
%
I
]
comm
-
assoc
.
rewrite
auth_closing
//
;
[]
.
erewrite
pvs_frame_l
.
apply
pvs_mono
.
...
...
This diff is collapsed.
Click to expand it.
program_logic/ghost_ownership.v
+
10
−
5
View file @
042e24dc
...
...
@@ -82,14 +82,19 @@ Proof. unfold own; apply _. Qed.
(* TODO: This also holds if we just have ✓ a at the current step-idx, as Iris
assertion. However, the map_updateP_alloc does not suffice to show this. *)
Lemma
own_alloc
a
E
:
✓
a
→
True
⊑
pvs
E
E
(
∃
γ
,
own
i
γ
a
)
.
Lemma
own_alloc
_strong
a
E
(
G
:
gset
gname
)
:
✓
a
→
True
⊑
pvs
E
E
(
∃
γ
,
■
(
γ
∉
G
)
∧
own
i
γ
a
)
.
Proof
.
intros
Ha
.
rewrite
-
(
pvs_mono
_
_
(
∃
m
,
■
(
∃
γ
,
m
=
to_globalF
i
γ
a
)
∧
ownG
m
)
%
I
)
.
rewrite
-
(
pvs_mono
_
_
(
∃
m
,
■
(
∃
γ
,
γ
∉
G
∧
m
=
to_globalF
i
γ
a
)
∧
ownG
m
)
%
I
)
.
*
eapply
pvs_ownG_updateP_empty
,
(
iprod_singleton_updateP_empty
i
);
first
(
eapply
map_updateP_alloc'
,
cmra_transport_valid
,
Ha
);
naive_solver
.
*
apply
exist_elim
=>
m
;
apply
const_elim_l
=>
-
[
γ
->
]
.
by
rewrite
-
(
exist_intro
γ
)
.
first
(
eapply
map_updateP_alloc_strong'
,
cmra_transport_valid
,
Ha
);
naive_solver
.
*
apply
exist_elim
=>
m
;
apply
const_elim_l
=>
-
[
γ
[
Hfresh
->
]]
.
by
rewrite
-
(
exist_intro
γ
)
const_equiv
.
Qed
.
Lemma
own_alloc
a
E
:
✓
a
→
True
⊑
pvs
E
E
(
∃
γ
,
own
i
γ
a
)
.
Proof
.
intros
Ha
.
rewrite
(
own_alloc_strong
a
E
∅
)
//
;
[]
.
apply
pvs_mono
.
apply
exist_mono
=>?
.
eauto
with
I
.
Qed
.
Lemma
own_updateP
P
γ
a
E
:
...
...
This diff is collapsed.
Click to expand it.
program_logic/saved_prop.v
+
4
−
0
View file @
042e24dc
...
...
@@ -15,6 +15,10 @@ Section saved_prop.
Implicit
Types
P
Q
:
iPropG
Λ
Σ
.
Implicit
Types
γ
:
gname
.
Lemma
saved_prop_alloc_strong
N
P
(
G
:
gset
gname
)
:
True
⊑
pvs
N
N
(
∃
γ
,
■
(
γ
∉
G
)
∧
saved_prop_own
SPI
γ
P
)
.
Proof
.
by
apply
own_alloc_strong
.
Qed
.
Lemma
saved_prop_alloc
N
P
:
True
⊑
pvs
N
N
(
∃
γ
,
saved_prop_own
SPI
γ
P
)
.
Proof
.
by
apply
own_alloc
.
Qed
.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment