Forked from
Iris / Iris
5814 commits behind the upstream repository.
joining_existentials.v 4.28 KiB
From iris.program_logic Require Export weakestpre hoare.
From iris.heap_lang Require Export lang.
From iris.algebra Require Import excl agree csum.
From iris.heap_lang.lib.barrier Require Import proof specification.
From iris.heap_lang Require Import notation par proofmode.
From iris.proofmode Require Import tactics.
Definition one_shotR (Σ : gFunctors) (F : cFunctor) :=
csumR (exclR unitC) (agreeR $ laterC $ F (iPreProp Σ)).
Definition Pending {Σ F} : one_shotR Σ F := Cinl (Excl ()).
Definition Shot {Σ} {F : cFunctor} (x : F (iProp Σ)) : one_shotR Σ F :=
Cinr $ to_agree $ Next $ cFunctor_map F (iProp_fold, iProp_unfold) x.
Class oneShotG (Σ : gFunctors) (F : cFunctor) :=
one_shot_inG :> inG Σ (one_shotR Σ F).
Definition oneShotΣ (F : cFunctor) : gFunctors :=
#[ GFunctor (csumRF (exclRF unitC) (agreeRF (▶ F))) ].
Instance subG_oneShotΣ {Σ F} : subG (oneShotΣ F) Σ → oneShotG Σ F.
Proof. apply subG_inG. Qed.
Definition client eM eW1 eW2 : expr :=
let: "b" := newbarrier #() in
(eM ;; signal "b") ||| ((wait "b" ;; eW1) ||| (wait "b" ;; eW2)).
Global Opaque client.
Section proof.
Context `{!heapG Σ, !barrierG Σ, !spawnG Σ, !oneShotG Σ F}.
Context (N : namespace).
Local Notation X := (F (iProp Σ)).
Definition barrier_res γ (Φ : X → iProp Σ) : iProp Σ :=
(∃ x, own γ (Shot x) ∗ Φ x)%I.
Lemma worker_spec e γ l (Φ Ψ : X → iProp Σ) `{!Closed [] e} :
recv N l (barrier_res γ Φ) ∗ (∀ x, {{ Φ x }} e {{ _, Ψ x }})
⊢ WP wait #l ;; e {{ _, barrier_res γ Ψ }}.
Proof.
iIntros "[Hl #He]". wp_apply (wait_spec with "[- $Hl]"); simpl.
iDestruct 1 as (x) "[#Hγ Hx]".
wp_seq. iApply wp_wand_l. iSplitR; [|by iApply "He"].
iIntros (v) "?"; iExists x; by iSplit.
Qed.
Context (P : iProp Σ) (Φ Φ1 Φ2 Ψ Ψ1 Ψ2 : X -n> iProp Σ).
Context {Φ_split : ∀ x, Φ x ⊢ (Φ1 x ∗ Φ2 x)}.
Context {Ψ_join : ∀ x, (Ψ1 x ∗ Ψ2 x) ⊢ Ψ x}.
Lemma P_res_split γ : barrier_res γ Φ ⊢ barrier_res γ Φ1 ∗ barrier_res γ Φ2.
Proof.
iDestruct 1 as (x) "[#Hγ Hx]".
iDestruct (Φ_split with "Hx") as "[H1 H2]". by iSplitL "H1"; iExists x; iSplit.
Qed.
Lemma Q_res_join γ : barrier_res γ Ψ1 ∗ barrier_res γ Ψ2 ⊢ ▷ barrier_res γ Ψ.
Proof.
iIntros "[Hγ Hγ']";
iDestruct "Hγ" as (x) "[#Hγ Hx]"; iDestruct "Hγ'" as (x') "[#Hγ' Hx']".
iAssert (▷ (x ≡ x'))%I as "Hxx".
{ iCombine "Hγ" "Hγ'" as "Hγ2". iClear "Hγ Hγ'".
rewrite own_valid csum_validI /= agree_validI agree_equivI uPred.later_equivI /=.
rewrite -{2}[x]cFunctor_id -{2}[x']cFunctor_id.
rewrite (ne_proper (cFunctor_map F) (cid, cid) (_ ◎ _, _ ◎ _)); last first.
{ by split; intro; simpl; symmetry; apply iProp_fold_unfold. }
rewrite !cFunctor_compose. iNext. by iRewrite "Hγ2". }
iNext. iRewrite -"Hxx" in "Hx'".
iExists x; iFrame "Hγ". iApply Ψ_join; by iSplitL "Hx".
Qed.
Lemma client_spec_new eM eW1 eW2 `{!Closed [] eM, !Closed [] eW1, !Closed [] eW2} :
heapN ⊥ N →
heap_ctx ∗ P
∗ {{ P }} eM {{ _, ∃ x, Φ x }}
∗ (∀ x, {{ Φ1 x }} eW1 {{ _, Ψ1 x }})
∗ (∀ x, {{ Φ2 x }} eW2 {{ _, Ψ2 x }})
⊢ WP client eM eW1 eW2 {{ _, ∃ γ, barrier_res γ Ψ }}.
Proof.
iIntros (HN) "/= (#Hh&HP&#He&#He1&#He2)"; rewrite /client.
iMod (own_alloc (Pending : one_shotR Σ F)) as (γ) "Hγ"; first done.
wp_apply (newbarrier_spec N (barrier_res γ Φ) with "Hh"); auto.
iIntros (l) "[Hr Hs]".
set (workers_post (v : val) := (barrier_res γ Ψ1 ∗ barrier_res γ Ψ2)%I).
wp_let. wp_apply (wp_par (λ _, True)%I workers_post with "[- $Hh]").
iSplitL "HP Hs Hγ"; [|iSplitL "Hr"].
- wp_bind eM. iApply wp_wand_l; iSplitR "HP"; [|by iApply "He"].
iIntros (v) "HP"; iDestruct "HP" as (x) "HP". wp_let.
iMod (own_update with "Hγ") as "Hx".
{ by apply (cmra_update_exclusive (Shot x)). }
iApply (signal_spec with "[- $Hs]"); last auto.
iExists x; auto.
- iDestruct (recv_weaken with "[] Hr") as "Hr"; first by iApply P_res_split.
iMod (recv_split with "Hr") as "[H1 H2]"; first done.
wp_apply (wp_par (λ _, barrier_res γ Ψ1)%I
(λ _, barrier_res γ Ψ2)%I with "[-$Hh]").
iSplitL "H1"; [|iSplitL "H2"].
+ iApply worker_spec; auto.
+ iApply worker_spec; auto.
+ auto.
- iIntros (_ v) "[_ H]". iDestruct (Q_res_join with "H") as "?". auto.
Qed.
End proof.