Forked from
Iris / Iris
5834 commits behind the upstream repository.
-
Robbert Krebbers authoredRobbert Krebbers authored
heap.v 8.07 KiB
From iris.heap_lang Require Export lifting.
From iris.algebra Require Import auth gmap frac dec_agree.
From iris.base_logic.lib Require Export invariants.
From iris.base_logic.lib Require Import wsat auth.
From iris.proofmode Require Import tactics.
Import uPred.
(* TODO: The entire construction could be generalized to arbitrary languages that have
a finmap as their state. Or maybe even beyond "as their state", i.e. arbitrary
predicates over finmaps instead of just ownP. *)
Definition heapN : namespace := nroot .@ "heap".
Definition heapUR : ucmraT := gmapUR loc (prodR fracR (dec_agreeR val)).
(** The CMRA we need. *)
Class heapG Σ := HeapG {
heapG_iris_inG :> irisG heap_lang Σ;
heap_inG :> authG Σ heapUR;
heap_name : gname
}.
Definition to_heap : state → heapUR := fmap (λ v, (1%Qp, DecAgree v)).
Section definitions.
Context `{heapG Σ}.
Definition heap_mapsto_def (l : loc) (q : Qp) (v: val) : iProp Σ :=
auth_own heap_name ({[ l := (q, DecAgree v) ]}).
Definition heap_mapsto_aux : { x | x = @heap_mapsto_def }. by eexists. Qed.
Definition heap_mapsto := proj1_sig heap_mapsto_aux.
Definition heap_mapsto_eq : @heap_mapsto = @heap_mapsto_def :=
proj2_sig heap_mapsto_aux.
Definition heap_ctx : iProp Σ := auth_ctx heap_name heapN to_heap ownP.
End definitions.
Typeclasses Opaque heap_ctx heap_mapsto.
Notation "l ↦{ q } v" := (heap_mapsto l q v)
(at level 20, q at level 50, format "l ↦{ q } v") : uPred_scope.
Notation "l ↦ v" := (heap_mapsto l 1 v) (at level 20) : uPred_scope.
Notation "l ↦{ q } -" := (∃ v, l ↦{q} v)%I
(at level 20, q at level 50, format "l ↦{ q } -") : uPred_scope.
Notation "l ↦ -" := (l ↦{1} -)%I (at level 20) : uPred_scope.
Section heap.
Context {Σ : gFunctors}.
Implicit Types P Q : iProp Σ.
Implicit Types Φ : val → iProp Σ.
Implicit Types σ : state.
Implicit Types h g : heapUR.
(** Conversion to heaps and back *)
Lemma to_heap_valid σ : ✓ to_heap σ.
Proof. intros l. rewrite lookup_fmap. by case (σ !! l). Qed.
Lemma lookup_to_heap_None σ l : σ !! l = None → to_heap σ !! l = None.
Proof. by rewrite /to_heap lookup_fmap=> ->. Qed.
Lemma heap_singleton_included σ l q v :
{[l := (q, DecAgree v)]} ≼ to_heap σ → σ !! l = Some v.
Proof.
rewrite singleton_included=> -[[q' av] [/leibniz_equiv_iff Hl Hqv]].
move: Hl. rewrite /to_heap lookup_fmap fmap_Some=> -[v' [Hl [??]]]; subst.
by move: Hqv=> /Some_pair_included_total_2 [_ /DecAgree_included ->].
Qed.
Lemma heap_singleton_included' σ l q v :
{[l := (q, DecAgree v)]} ≼ to_heap σ → to_heap σ !! l = Some (1%Qp,DecAgree v).
Proof.
intros Hl%heap_singleton_included. by rewrite /to_heap lookup_fmap Hl.
Qed.
Lemma to_heap_insert l v σ :
to_heap (<[l:=v]> σ) = <[l:=(1%Qp, DecAgree v)]> (to_heap σ).
Proof. by rewrite /to_heap fmap_insert. Qed.
Context `{heapG Σ}.
(** General properties of mapsto *)
Global Instance heap_ctx_persistent : PersistentP heap_ctx.
Proof. rewrite /heap_ctx. apply _. Qed.
Global Instance heap_mapsto_timeless l q v : TimelessP (l ↦{q} v).
Proof. rewrite heap_mapsto_eq /heap_mapsto_def. apply _. Qed.
Lemma heap_mapsto_op_eq l q1 q2 v : l ↦{q1} v ★ l ↦{q2} v ⊣⊢ l ↦{q1+q2} v.
Proof.
by rewrite heap_mapsto_eq -auth_own_op op_singleton pair_op dec_agree_idemp.
Qed.
Lemma heap_mapsto_op l q1 q2 v1 v2 :
l ↦{q1} v1 ★ l ↦{q2} v2 ⊣⊢ v1 = v2 ∧ l ↦{q1+q2} v1.
Proof.
destruct (decide (v1 = v2)) as [->|].
{ by rewrite heap_mapsto_op_eq pure_equiv // left_id. }
apply (anti_symm (⊢)); last by apply pure_elim_l.
rewrite heap_mapsto_eq -auth_own_op auth_own_valid discrete_valid.
eapply pure_elim; [done|] => /=.
rewrite op_singleton pair_op dec_agree_ne // singleton_valid. by intros [].
Qed.
Lemma heap_mapsto_op_1 l q1 q2 v1 v2 :
l ↦{q1} v1 ★ l ↦{q2} v2 ⊢ v1 = v2 ∧ l ↦{q1+q2} v1.
Proof. by rewrite heap_mapsto_op. Qed.
Lemma heap_mapsto_op_half l q v1 v2 :
l ↦{q/2} v1 ★ l ↦{q/2} v2 ⊣⊢ v1 = v2 ∧ l ↦{q} v1.
Proof. by rewrite heap_mapsto_op Qp_div_2. Qed.
Lemma heap_mapsto_op_half_1 l q v1 v2 :
l ↦{q/2} v1 ★ l ↦{q/2} v2 ⊢ v1 = v2 ∧ l ↦{q} v1.
Proof. by rewrite heap_mapsto_op_half. Qed.
Lemma heap_ex_mapsto_op l q1 q2 : l ↦{q1} - ★ l ↦{q2} - ⊣⊢ l ↦{q1+q2} -.
Proof.
iSplit.
- iIntros "[H1 H2]". iDestruct "H1" as (v1) "H1". iDestruct "H2" as (v2) "H2".
iDestruct (heap_mapsto_op_1 with "[$H1 $H2]") as "[% ?]"; subst; eauto.
- iDestruct 1 as (v) "H". rewrite -heap_mapsto_op_eq.
iDestruct "H" as "[H1 H2]"; iSplitL "H1"; eauto.
Qed.
Lemma heap_ex_mapsto_op_half l q : l ↦{q/2} - ★ l ↦{q/2} - ⊣⊢ l ↦{q} -.
Proof. by rewrite heap_ex_mapsto_op Qp_div_2. Qed.
(** Weakest precondition *)
Lemma wp_alloc E e v :
to_val e = Some v → nclose heapN ⊆ E →
{{{ heap_ctx }}} Alloc e @ E {{{ l; LitV (LitLoc l), l ↦ v }}}.
Proof.
iIntros (<-%of_to_val ? Φ) "[#Hinv HΦ]". rewrite /heap_ctx.
iMod (auth_empty heap_name) as "Ha".
iMod (auth_open with "[$Hinv $Ha]") as (σ) "(%&Hσ&Hcl)"; first done.
iApply wp_alloc_pst. iFrame "Hσ". iNext. iIntros (l) "[% Hσ] !>".
iMod ("Hcl" with "* [Hσ]") as "Ha".
{ iFrame. iPureIntro. rewrite to_heap_insert.
eapply alloc_singleton_local_update; by auto using lookup_to_heap_None. }
iApply "HΦ". by rewrite heap_mapsto_eq /heap_mapsto_def.
Qed.
Lemma wp_load E l q v :
nclose heapN ⊆ E →
{{{ heap_ctx ★ ▷ l ↦{q} v }}} Load (Lit (LitLoc l)) @ E
{{{; v, l ↦{q} v }}}.
Proof.
iIntros (? Φ) "[[#Hinv >Hl] HΦ]".
rewrite /heap_ctx heap_mapsto_eq /heap_mapsto_def.
iMod (auth_open with "[$Hinv $Hl]") as (σ) "(%&Hσ&Hcl)"; first done.
iApply (wp_load_pst _ σ); first eauto using heap_singleton_included.
iIntros "{$Hσ}"; iNext; iIntros "Hσ !>".
iMod ("Hcl" with "* [Hσ]") as "Ha"; first eauto. by iApply "HΦ".
Qed.
Lemma wp_store E l v' e v :
to_val e = Some v → nclose heapN ⊆ E →
{{{ heap_ctx ★ ▷ l ↦ v' }}} Store (Lit (LitLoc l)) e @ E
{{{; LitV LitUnit, l ↦ v }}}.
Proof.
iIntros (<-%of_to_val ? Φ) "[[#Hinv >Hl] HΦ]".
rewrite /heap_ctx heap_mapsto_eq /heap_mapsto_def.
iMod (auth_open with "[$Hinv $Hl]") as (σ) "(%&Hσ&Hcl)"; first done.
iApply (wp_store_pst _ σ); first eauto using heap_singleton_included.
iIntros "{$Hσ}"; iNext; iIntros "Hσ !>". iMod ("Hcl" with "* [Hσ]") as "Ha".
{ iFrame. iPureIntro. rewrite to_heap_insert.
eapply singleton_local_update, exclusive_local_update; last done.
by eapply heap_singleton_included'. }
by iApply "HΦ".
Qed.
Lemma wp_cas_fail E l q v' e1 v1 e2 v2 :
to_val e1 = Some v1 → to_val e2 = Some v2 → v' ≠ v1 → nclose heapN ⊆ E →
{{{ heap_ctx ★ ▷ l ↦{q} v' }}} CAS (Lit (LitLoc l)) e1 e2 @ E
{{{; LitV (LitBool false), l ↦{q} v' }}}.
Proof.
iIntros (<-%of_to_val <-%of_to_val ?? Φ) "[[#Hinv >Hl] HΦ]".
rewrite /heap_ctx heap_mapsto_eq /heap_mapsto_def.
iMod (auth_open with "[$Hinv $Hl]") as (σ) "(%&Hσ&Hcl)"; first done.
iApply (wp_cas_fail_pst _ σ); [eauto using heap_singleton_included|done|].
iIntros "{$Hσ}"; iNext; iIntros "Hσ !>".
iMod ("Hcl" with "* [Hσ]") as "Ha"; first eauto. by iApply "HΦ".
Qed.
Lemma wp_cas_suc E l e1 v1 e2 v2 :
to_val e1 = Some v1 → to_val e2 = Some v2 → nclose heapN ⊆ E →
{{{ heap_ctx ★ ▷ l ↦ v1 }}} CAS (Lit (LitLoc l)) e1 e2 @ E
{{{; LitV (LitBool true), l ↦ v2 }}}.
Proof.
iIntros (<-%of_to_val <-%of_to_val ? Φ) "[[#Hinv >Hl] HΦ]".
rewrite /heap_ctx heap_mapsto_eq /heap_mapsto_def.
iMod (auth_open with "[$Hinv $Hl]") as (σ) "(%&Hσ&Hcl)"; first done.
iApply (wp_cas_suc_pst _ σ); first eauto using heap_singleton_included.
iIntros "{$Hσ}"; iNext; iIntros "Hσ !>". iMod ("Hcl" with "* [Hσ]") as "Ha".
{ iFrame. iPureIntro. rewrite to_heap_insert.
eapply singleton_local_update, exclusive_local_update; last done.
by eapply heap_singleton_included'. }
by iApply "HΦ".
Qed.
End heap.