Forked from
Iris / Iris
6563 commits behind the upstream repository.
-
Robbert Krebbers authored
We git this from monotonicity now.
Robbert Krebbers authoredWe git this from monotonicity now.
weakestpre_fix.v 5.04 KiB
From Coq Require Import Wf_nat.
From iris.program_logic Require Import weakestpre wsat.
Local Hint Extern 10 (_ ≤ _) => omega.
Local Hint Extern 10 (_ ⊥ _) => set_solver.
Local Hint Extern 10 (✓{_} _) =>
repeat match goal with
| H : wsat _ _ _ _ |- _ => apply wsat_valid in H; last omega
end; solve_validN.
(** This files provides an alternative definition of wp in terms of a fixpoint
of a contractive function, rather than a CoInductive type. This is how we define
wp on paper. We show that the two versions are equivalent. *)
Section def.
Context {Λ : language} {Σ : iFunctor}.
Local Notation iProp := (iProp Λ Σ).
Local Notation coPsetC := (leibnizC (coPset)).
Program Definition wp_pre
(wp : coPsetC -n> exprC Λ -n> (valC Λ -n> iProp) -n> iProp)
(E : coPset) (e1 : expr Λ) (Φ : valC Λ -n> iProp) : iProp :=
{| uPred_holds n r1 := ∀ rf k Ef σ1,
0 ≤ k < n → E ⊥ Ef →
wsat (S k) (E ∪ Ef) σ1 (r1 ⋅ rf) →
(∀ v, to_val e1 = Some v →
∃ r2, Φ v (S k) r2 ∧ wsat (S k) (E ∪ Ef) σ1 (r2 ⋅ rf)) ∧
(to_val e1 = None → 0 < k →
reducible e1 σ1 ∧
(∀ e2 σ2 ef, prim_step e1 σ1 e2 σ2 ef →
∃ r2 r2',
wsat k (E ∪ Ef) σ2 (r2 ⋅ r2' ⋅ rf) ∧
wp E e2 Φ k r2 ∧
default True ef (λ ef, wp ⊤ ef (cconst True%I) k r2'))) |}.
Next Obligation.
intros wp E e1 Φ n r1 r2 Hwp [r3 Hr2] rf k Ef σ1 ??.
rewrite (dist_le _ _ _ _ Hr2); last lia. intros Hws.
destruct (Hwp (r3 ⋅ rf) k Ef σ1) as [Hval Hstep]; rewrite ?assoc; auto.
split.
- intros v Hv. destruct (Hval v Hv) as [r4 [??]].
exists (r4 ⋅ r3). rewrite -assoc. eauto using uPred_mono, cmra_includedN_l.
- intros ??. destruct Hstep as [Hred Hpstep]; auto.
split; [done|]=> e2 σ2 ef ?.
edestruct Hpstep as (r4&r4'&?&?&?); eauto.
exists r4, (r4' ⋅ r3); split_and?; auto.
+ by rewrite assoc -assoc.
+ destruct ef; simpl in *; eauto using uPred_mono, cmra_includedN_l.
Qed.
Next Obligation. repeat intro; eauto. Qed.
Lemma wp_pre_contractive' n E e Φ1 Φ2 r
(wp1 wp2 : coPsetC -n> exprC Λ -n> (valC Λ -n> iProp) -n> iProp) :
(∀ i : nat, i < n → wp1 ≡{i}≡ wp2) → Φ1 ≡{n}≡ Φ2 →
wp_pre wp1 E e Φ1 n r → wp_pre wp2 E e Φ2 n r.
Proof.
intros HI HΦ Hwp rf k Ef σ1 ???.
destruct (Hwp rf k Ef σ1) as [Hval Hstep]; auto.
split.
{ intros v ?. destruct (Hval v) as (r2&?&?); auto.
exists r2. split; [apply HΦ|]; auto. }
intros ??. destruct Hstep as [Hred Hpstep]; auto.
split; [done|]=> e2 σ2 ef ?.
destruct (Hpstep e2 σ2 ef) as (r2&r2'&?&?&?); [done..|].
exists r2, r2'; split_and?; auto.
- apply HI with k; auto.
assert (wp1 E e2 Φ2 ≡{n}≡ wp1 E e2 Φ1) as HwpΦ by (by rewrite HΦ).
apply HwpΦ; auto.
- destruct ef as [ef|]; simpl in *; last done.
apply HI with k; auto.
Qed.
Instance wp_pre_ne n wp E e : Proper (dist n ==> dist n) (wp_pre wp E e).
Proof.
split; split;
eapply wp_pre_contractive'; eauto using dist_le, (symmetry (R:=dist _)).
Qed.
Definition wp_preC
(wp : coPsetC -n> exprC Λ -n> (valC Λ -n> iProp) -n> iProp) :
coPsetC -n> exprC Λ -n> (valC Λ -n> iProp) -n> iProp :=
CofeMor (λ E : coPsetC, CofeMor (λ e : exprC Λ, CofeMor (wp_pre wp E e))).
Local Instance pre_wp_contractive : Contractive wp_preC.
Proof.
split; split; eapply wp_pre_contractive'; auto using (symmetry (R:=dist _)).
Qed.
Definition wp_fix : coPsetC -n> exprC Λ -n> (valC Λ -n> iProp) -n> iProp :=
fixpoint wp_preC.
Lemma wp_fix_unfold E e Φ : wp_fix E e Φ ⊣⊢ wp_preC wp_fix E e Φ.
Proof. by rewrite /wp_fix -fixpoint_unfold. Qed.
Lemma wp_fix_correct E e (Φ : valC Λ -n> iProp) : wp_fix E e Φ ⊣⊢ wp E e Φ.
Proof.
split=> n r Hr. rewrite wp_eq /wp_def {2}/uPred_holds.
split; revert r E e Φ Hr.
- induction n as [n IH] using lt_wf_ind=> r1 E e Φ ? Hwp.
case EQ: (to_val e)=>[v|].
+ rewrite -(of_to_val _ _ EQ) {IH}. constructor. rewrite pvs_eq.
intros rf [|k] Ef σ ???; first omega.
apply wp_fix_unfold in Hwp; last done.
destruct (Hwp rf k Ef σ); auto.
+ constructor; [done|]=> rf k Ef σ1 ???.
apply wp_fix_unfold in Hwp; last done.
destruct (Hwp rf k Ef σ1) as [Hval [Hred Hpstep]]; auto.
split; [done|]=> e2 σ2 ef ?.
destruct (Hpstep e2 σ2 ef) as (r2&r2'&?&?&?); [done..|].
exists r2, r2'; split_and?; auto.
intros ? ->. change (weakestpre.wp_pre ⊤ (cconst True%I) e' k r2'); eauto.
- induction n as [n IH] using lt_wf_ind=> r1 E e Φ ? Hwp.
apply wp_fix_unfold; [done|]=> rf k Ef σ1 ???. split.
+ intros v Hval.
destruct Hwp as [??? Hpvs|]; rewrite ?to_of_val in Hval; simplify_eq/=.
rewrite pvs_eq in Hpvs.
destruct (Hpvs rf (S k) Ef σ1) as (r2&?&?); eauto.
+ intros Hval ?.
destruct Hwp as [|???? Hwp]; rewrite ?to_of_val in Hval; simplify_eq/=.
edestruct (Hwp rf k Ef σ1) as [? Hpstep]; auto.
split; [done|]=> e2 σ2 ef ?.
destruct (Hpstep e2 σ2 ef) as (r2&r2'&?&?&?); auto.
exists r2, r2'. destruct ef; simpl; auto.
Qed.
End def.