Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
I
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Simon Friis Vindum
Iris
Commits
d6eed8ce
Commit
d6eed8ce
authored
5 years ago
by
Ralf Jung
Browse files
Options
Downloads
Patches
Plain Diff
rename STS lemmas to make _op a suffix
parent
60d4f88f
No related branches found
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
theories/algebra/sts.v
+4
-4
4 additions, 4 deletions
theories/algebra/sts.v
theories/base_logic/lib/sts.v
+5
-5
5 additions, 5 deletions
theories/base_logic/lib/sts.v
with
9 additions
and
9 deletions
theories/algebra/sts.v
+
4
−
4
View file @
d6eed8ce
...
...
@@ -327,14 +327,14 @@ Lemma sts_auth_frag_valid_inv s S T1 T2 :
Proof
.
by
intros
(?
&
?
&
Hdisj
);
inversion
Hdisj
.
Qed
.
(** Op *)
Lemma
sts_
op_
auth_frag
s
S
T
:
Lemma
sts_auth_frag
_op
s
S
T
:
s
∈
S
→
closed
S
T
→
sts_auth
s
∅
⋅
sts_frag
S
T
≡
sts_auth
s
T
.
Proof
.
intros
;
split
;
[
split
|
constructor
;
set_solver
];
simpl
.
-
intros
(?
&
?
&
?);
by
apply
closed_disjoint
with
S
.
-
intros
;
split_and
?;
last
constructor
;
set_solver
.
Qed
.
Lemma
sts_
op_
auth_frag_up
s
T
:
Lemma
sts_auth_frag_up
_op
s
T
:
sts_auth
s
∅
⋅
sts_frag_up
s
T
≡
sts_auth
s
T
.
Proof
.
intros
;
split
;
[
split
|
constructor
;
set_solver
];
simpl
.
...
...
@@ -346,7 +346,7 @@ Proof.
+
constructor
;
last
set_solver
.
apply
elem_of_up
.
Qed
.
Lemma
sts_
op_
frag
S1
S2
T1
T2
:
Lemma
sts_frag
_op
S1
S2
T1
T2
:
T1
##
T2
→
sts
.
closed
S1
T1
→
sts
.
closed
S2
T2
→
sts_frag
(
S1
∩
S2
)
(
T1
∪
T2
)
≡
sts_frag
S1
T1
⋅
sts_frag
S2
T2
.
Proof
.
...
...
@@ -357,7 +357,7 @@ Qed.
(* Notice that the following does *not* hold -- the composition of the
two closures is weaker than the closure with the itnersected token
set. Also see up_op.
Lemma sts_
op_
frag_up s T1 T2 :
Lemma sts_frag_up
_op
s T1 T2 :
T1 ## T2 → sts_frag_up s (T1 ∪ T2) ≡ sts_frag_up s T1 ⋅ sts_frag_up s T2.
*)
...
...
This diff is collapsed.
Click to expand it.
theories/base_logic/lib/sts.v
+
5
−
5
View file @
d6eed8ce
...
...
@@ -96,7 +96,7 @@ Section sts.
Lemma
sts_ownS_op
γ
S1
S2
T1
T2
:
T1
##
T2
→
sts
.
closed
S1
T1
→
sts
.
closed
S2
T2
→
sts_ownS
γ
(
S1
∩
S2
)
(
T1
∪
T2
)
⊣⊢
(
sts_ownS
γ
S1
T1
∗
sts_ownS
γ
S2
T2
)
.
Proof
.
intros
.
by
rewrite
/
sts_ownS
-
own_op
sts_
op_
frag
.
Qed
.
Proof
.
intros
.
by
rewrite
/
sts_ownS
-
own_op
sts_frag
_op
.
Qed
.
Lemma
sts_own_op
γ
s
T1
T2
:
T1
##
T2
→
sts_own
γ
s
(
T1
∪
T2
)
==∗
sts_own
γ
s
T1
∗
sts_own
γ
s
T2
.
...
...
@@ -104,7 +104,7 @@ Section sts.
Proof
.
intros
.
rewrite
/
sts_own
-
own_op
.
iIntros
"Hown"
.
iDestruct
(
own_valid
with
"Hown"
)
as
%
Hval
%
sts_frag_up_valid
.
rewrite
-
sts_
op_
frag
.
rewrite
-
sts_frag
_op
.
-
iApply
(
sts_own_weaken
with
"Hown"
);
first
done
.
+
split
;
apply
sts
.
elem_of_up
.
+
eapply
sts
.
closed_op
;
apply
sts
.
closed_up
;
set_solver
.
...
...
@@ -121,7 +121,7 @@ Section sts.
iIntros
"Hφ"
.
rewrite
/
sts_ctx
/
sts_own
.
iMod
(
own_alloc
(
sts_auth
s
(
⊤
∖
sts
.
tok
s
)))
as
(
γ
)
"Hγ"
.
{
apply
sts_auth_valid
;
set_solver
.
}
iExists
γ
;
iRevert
"Hγ"
;
rewrite
-
sts_
op_
auth_frag_up
;
iIntros
"[Hγ $]"
.
iExists
γ
;
iRevert
"Hγ"
;
rewrite
-
sts_auth_frag_up
_op
;
iIntros
"[Hγ $]"
.
iMod
(
inv_alloc
N
_
(
sts_inv
γ
φ
)
with
"[Hφ Hγ]"
)
as
"#?"
;
auto
.
rewrite
/
sts_inv
.
iNext
.
iExists
s
.
by
iFrame
.
Qed
.
...
...
@@ -139,8 +139,8 @@ Section sts.
iModIntro
;
iExists
s
;
iSplit
;
[
done
|];
iFrame
"Hφ"
.
iIntros
(
s'
T'
)
"[% Hφ]"
.
iMod
(
own_update_2
with
"Hγ Hγf"
)
as
"Hγ"
.
{
rewrite
sts_
op_
auth_frag
;
[|
done
..]
.
by
apply
sts_update_auth
.
}
iRevert
"Hγ"
;
rewrite
-
sts_
op_
auth_frag_up
;
iIntros
"[Hγ $]"
.
{
rewrite
sts_auth_frag
_op
;
[|
done
..]
.
by
apply
sts_update_auth
.
}
iRevert
"Hγ"
;
rewrite
-
sts_auth_frag_up
_op
;
iIntros
"[Hγ $]"
.
iModIntro
.
iNext
.
iExists
s'
;
by
iFrame
.
Qed
.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment