Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Terraform modules
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Pierre Roux
Iris
Commits
f1305a4e
Commit
f1305a4e
authored
4 years ago
by
Ralf Jung
Browse files
Options
Downloads
Patches
Plain Diff
gmap_view: add some missing validity lemmas
parent
dca88103
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
theories/algebra/lib/gmap_view.v
+16
-0
16 additions, 0 deletions
theories/algebra/lib/gmap_view.v
with
16 additions
and
0 deletions
theories/algebra/lib/gmap_view.v
+
16
−
0
View file @
f1305a4e
...
...
@@ -201,11 +201,23 @@ Section lemmas.
Lemma
gmap_view_auth_valid
m
:
✓
gmap_view_auth
1
m
.
Proof
.
rewrite
gmap_view_auth_frac_valid
.
done
.
Qed
.
Lemma
gmap_view_auth_frac_op_validN
n
q1
q2
m1
m2
:
✓
{
n
}
(
gmap_view_auth
q1
m1
⋅
gmap_view_auth
q2
m2
)
↔
✓
(
q1
+
q2
)
%
Qp
∧
m1
≡
{
n
}
≡
m2
.
Proof
.
rewrite
view_auth_frac_op_validN
.
intuition
eauto
using
gmap_view_rel_unit
.
Qed
.
Lemma
gmap_view_auth_frac_op_valid
q1
q2
m1
m2
:
✓
(
gmap_view_auth
q1
m1
⋅
gmap_view_auth
q2
m2
)
↔
✓
(
q1
+
q2
)
%
Qp
∧
m1
≡
m2
.
Proof
.
rewrite
view_auth_frac_op_valid
.
intuition
eauto
using
gmap_view_rel_unit
.
Qed
.
Lemma
gmap_view_auth_frac_op_valid_L
`{
!
LeibnizEquiv
V
}
q1
q2
m1
m2
:
✓
(
gmap_view_auth
q1
m1
⋅
gmap_view_auth
q2
m2
)
↔
✓
(
q1
+
q2
)
%
Qp
∧
m1
=
m2
.
Proof
.
unfold_leibniz
.
apply
gmap_view_auth_frac_op_valid
.
Qed
.
Lemma
gmap_view_auth_op_validN
n
m1
m2
:
✓
{
n
}
(
gmap_view_auth
1
m1
⋅
gmap_view_auth
1
m2
)
↔
False
.
Proof
.
apply
view_auth_op_validN
.
Qed
.
Lemma
gmap_view_auth_op_valid
m1
m2
:
✓
(
gmap_view_auth
1
m1
⋅
gmap_view_auth
1
m2
)
↔
False
.
Proof
.
apply
view_auth_op_valid
.
Qed
.
...
...
@@ -275,6 +287,10 @@ Section lemmas.
+
apply
Hm
.
+
revert
n
.
apply
equiv_dist
.
apply
Hm
.
Qed
.
Lemma
gmap_view_both_frac_valid_L
`{
!
LeibnizEquiv
V
}
q
m
k
dq
v
:
✓
(
gmap_view_auth
q
m
⋅
gmap_view_frag
k
dq
v
)
↔
✓
q
∧
✓
dq
∧
m
!!
k
=
Some
v
.
Proof
.
unfold_leibniz
.
apply
gmap_view_both_frac_valid
.
Qed
.
Lemma
gmap_view_both_valid
m
k
dq
v
:
✓
(
gmap_view_auth
1
m
⋅
gmap_view_frag
k
dq
v
)
↔
✓
dq
∧
m
!!
k
≡
Some
v
.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment