Skip to content
Snippets Groups Projects
Commit e131afc0 authored by Robbert Krebbers's avatar Robbert Krebbers
Browse files

More LimitPreserving stuff.

Now, we never need to unfold LimitPreserving in LambdaRust, and hence
the entails_lim tactic is no longer needed.
parent 14a67809
No related branches found
No related tags found
No related merge requests found
...@@ -246,6 +246,46 @@ Ltac f_contractive := ...@@ -246,6 +246,46 @@ Ltac f_contractive :=
Ltac solve_contractive := solve_proper_core ltac:(fun _ => first [f_contractive | f_equiv]). Ltac solve_contractive := solve_proper_core ltac:(fun _ => first [f_contractive | f_equiv]).
(** Limit preserving predicates *)
Class LimitPreserving `{!Cofe A} (P : A Prop) : Prop :=
limit_preserving (c : chain A) : ( n, P (c n)) P (compl c).
Hint Mode LimitPreserving + + ! : typeclass_instances.
Section limit_preserving.
Context `{Cofe A}.
(* These are not instances as they will never fire automatically...
but they can still be helpful in proving things to be limit preserving. *)
Lemma limit_preserving_ext (P Q : A Prop) :
( x, P x Q x) LimitPreserving P LimitPreserving Q.
Proof. intros HP Hlimit c ?. apply HP, Hlimit=> n; by apply HP. Qed.
Global Instance limit_preserving_const (P : Prop) : LimitPreserving (λ _, P).
Proof. intros c HP. apply (HP 0). Qed.
Lemma limit_preserving_timeless (P : A Prop) :
Proper (dist 0 ==> impl) P LimitPreserving P.
Proof. intros PH c Hc. by rewrite (conv_compl 0). Qed.
Lemma limit_preserving_and (P1 P2 : A Prop) :
LimitPreserving P1 LimitPreserving P2
LimitPreserving (λ x, P1 x P2 x).
Proof. intros Hlim1 Hlim2 c Hc. split. apply Hlim1, Hc. apply Hlim2, Hc. Qed.
Lemma limit_preserving_impl (P1 P2 : A Prop) :
Proper (dist 0 ==> impl) P1 LimitPreserving P2
LimitPreserving (λ x, P1 x P2 x).
Proof.
intros Hlim1 Hlim2 c Hc HP1. apply Hlim2=> n; apply Hc.
eapply Hlim1, HP1. apply dist_le with n; last lia. apply (conv_compl n).
Qed.
Lemma limit_preserving_forall {B} (P : B A Prop) :
( y, LimitPreserving (P y))
LimitPreserving (λ x, y, P y x).
Proof. intros Hlim c Hc y. by apply Hlim. Qed.
End limit_preserving.
(** Fixpoint *) (** Fixpoint *)
Program Definition fixpoint_chain {A : ofeT} `{Inhabited A} (f : A A) Program Definition fixpoint_chain {A : ofeT} `{Inhabited A} (f : A A)
`{!Contractive f} : chain A := {| chain_car i := Nat.iter (S i) f inhabitant |}. `{!Contractive f} : chain A := {| chain_car i := Nat.iter (S i) f inhabitant |}.
...@@ -294,22 +334,23 @@ Section fixpoint. ...@@ -294,22 +334,23 @@ Section fixpoint.
Lemma fixpoint_ind (P : A Prop) : Lemma fixpoint_ind (P : A Prop) :
Proper (() ==> impl) P Proper (() ==> impl) P
( x, P x) ( x, P x P (f x)) ( x, P x) ( x, P x P (f x))
( (c : chain A), ( n, P (c n)) P (compl c)) LimitPreserving P
P (fixpoint f). P (fixpoint f).
Proof. Proof.
intros ? [x Hx] Hincr Hlim. set (chcar i := Nat.iter (S i) f x). intros ? [x Hx] Hincr Hlim. set (chcar i := Nat.iter (S i) f x).
assert (Hcauch : n i : nat, n i chcar i {n} chcar n). assert (Hcauch : n i : nat, n i chcar i {n} chcar n).
{ intros n. induction n as [|n IH]=> -[|i] //= ?; try omega. { intros n. rewrite /chcar. induction n as [|n IH]=> -[|i] //=;
- apply (contractive_0 f). eauto using contractive_0, contractive_S with omega. }
- apply (contractive_S f), IH; auto with omega. }
set (fp2 := compl {| chain_cauchy := Hcauch |}). set (fp2 := compl {| chain_cauchy := Hcauch |}).
rewrite -(fixpoint_unique fp2); first by apply Hlim; induction n; apply Hincr. assert (f fp2 fp2).
apply equiv_dist=>n. { apply equiv_dist=>n. rewrite /fp2 (conv_compl n) /= /chcar.
rewrite /fp2 (conv_compl n) /= /chcar. induction n as [|n IH]; simpl; eauto using contractive_0, contractive_S. }
induction n as [|n IH]; simpl; eauto using contractive_0, contractive_S. rewrite -(fixpoint_unique fp2) //.
apply Hlim=> n /=. by apply nat_iter_ind.
Qed. Qed.
End fixpoint. End fixpoint.
(** Fixpoint of f when f^k is contractive. **) (** Fixpoint of f when f^k is contractive. **)
Definition fixpointK `{Cofe A, Inhabited A} k (f : A A) Definition fixpointK `{Cofe A, Inhabited A} k (f : A A)
`{!Contractive (Nat.iter k f)} := fixpoint (Nat.iter k f). `{!Contractive (Nat.iter k f)} := fixpoint (Nat.iter k f).
...@@ -374,11 +415,11 @@ Section fixpointK. ...@@ -374,11 +415,11 @@ Section fixpointK.
Lemma fixpointK_ind (P : A Prop) : Lemma fixpointK_ind (P : A Prop) :
Proper (() ==> impl) P Proper (() ==> impl) P
( x, P x) ( x, P x P (f x)) ( x, P x) ( x, P x P (f x))
( (c : chain A), ( n, P (c n)) P (compl c)) LimitPreserving P
P (fixpointK k f). P (fixpointK k f).
Proof. Proof.
intros ? Hst Hincr Hlim. rewrite /fixpointK. eapply fixpoint_ind; [done..| |done]. intros. rewrite /fixpointK. apply fixpoint_ind; eauto.
clear- Hincr. intros. induction k; first done. simpl. auto. intros; apply nat_iter_ind; auto.
Qed. Qed.
End fixpointK. End fixpointK.
...@@ -1104,33 +1145,6 @@ Proof. ...@@ -1104,33 +1145,6 @@ Proof.
destruct n as [|n]; simpl in *; first done. apply cFunctor_ne, Hfg. destruct n as [|n]; simpl in *; first done. apply cFunctor_ne, Hfg.
Qed. Qed.
(** Limit preserving predicates *)
Class LimitPreserving `{!Cofe A} (P : A Prop) : Prop :=
limit_preserving (c : chain A) : ( n, P (c n)) P (compl c).
Hint Mode LimitPreserving + + ! : typeclass_instances.
Section limit_preserving.
Context {A : ofeT} `{!Cofe A}.
(* These are not instances as they will never fire automatically...
but they can still be helpful in proving things to be limit preserving. *)
Global Instance limit_preserving_const (P : Prop) : LimitPreserving (λ _, P).
Proof. intros c HP. apply (HP 0). Qed.
Lemma limit_preserving_timeless (P : A Prop) :
Proper (dist 0 ==> impl) P LimitPreserving P.
Proof. intros PH c Hc. by rewrite (conv_compl 0). Qed.
Lemma limit_preserving_and (P1 P2 : A Prop) :
LimitPreserving P1 LimitPreserving P2
LimitPreserving (λ x, P1 x P2 x).
Proof.
intros Hlim1 Hlim2 c Hc. split.
- apply Hlim1, Hc.
- apply Hlim2, Hc.
Qed.
End limit_preserving.
(** Constructing isomorphic OFEs *) (** Constructing isomorphic OFEs *)
Lemma iso_ofe_mixin {A : ofeT} `{Equiv B, Dist B} (g : B A) Lemma iso_ofe_mixin {A : ofeT} `{Equiv B, Dist B} (g : B A)
(g_equiv : y1 y2, y1 y2 g y1 g y2) (g_equiv : y1 y2, y1 y2 g y1 g y2)
...@@ -1161,6 +1175,14 @@ Section iso_cofe_subtype. ...@@ -1161,6 +1175,14 @@ Section iso_cofe_subtype.
Qed. Qed.
End iso_cofe_subtype. End iso_cofe_subtype.
Lemma iso_cofe_subtype' {A B : ofeT} `{Cofe A}
(P : A Prop) (f : x, P x B) (g : B A)
(Pg : y, P (g y))
(g_dist : n y1 y2, y1 {n} y2 g y1 {n} g y2)
(gf : x Hx, g (f x Hx) x)
(Hlimit : LimitPreserving P) : Cofe B.
Proof. apply: (iso_cofe_subtype P f g)=> // c. apply Hlimit=> ?; apply Pg. Qed.
Definition iso_cofe {A B : ofeT} `{Cofe A} (f : A B) (g : B A) Definition iso_cofe {A B : ofeT} `{Cofe A} (f : A B) (g : B A)
(g_dist : n y1 y2, y1 {n} y2 g y1 {n} g y2) (g_dist : n y1 y2, y1 {n} y2 g y1 {n} g y2)
(gf : x, g (f x) x) : Cofe B. (gf : x, g (f x) x) : Cofe B.
...@@ -1190,11 +1212,7 @@ Section sigma. ...@@ -1190,11 +1212,7 @@ Section sigma.
Canonical Structure sigC : ofeT := OfeT (sig P) sig_ofe_mixin. Canonical Structure sigC : ofeT := OfeT (sig P) sig_ofe_mixin.
Global Instance sig_cofe `{Cofe A, !LimitPreserving P} : Cofe sigC. Global Instance sig_cofe `{Cofe A, !LimitPreserving P} : Cofe sigC.
Proof. Proof. apply (iso_cofe_subtype' P (exist P) proj1_sig)=> //. by intros []. Qed.
apply: (iso_cofe_subtype P (exist P) proj1_sig).
- done.
- intros c. apply limit_preserving=> n. apply proj2_sig.
Qed.
Global Instance sig_timeless (x : sig P) : Timeless (`x) Timeless x. Global Instance sig_timeless (x : sig P) : Timeless (`x) Timeless x.
Proof. intros ? y. rewrite sig_dist_alt sig_equiv_alt. apply (timeless _). Qed. Proof. intros ? y. rewrite sig_dist_alt sig_equiv_alt. apply (timeless _). Qed.
......
...@@ -816,6 +816,9 @@ Proof. destruct mx; apply _. Qed. ...@@ -816,6 +816,9 @@ Proof. destruct mx; apply _. Qed.
(* Derived lemmas for persistence *) (* Derived lemmas for persistence *)
Global Instance PersistentP_proper : Proper (() ==> iff) (@PersistentP M). Global Instance PersistentP_proper : Proper (() ==> iff) (@PersistentP M).
Proof. solve_proper. Qed. Proof. solve_proper. Qed.
Global Instance limit_preserving_PersistentP {A:ofeT} `{Cofe A} (Φ : A uPred M) :
NonExpansive Φ LimitPreserving (λ x, PersistentP (Φ x)).
Proof. intros. apply limit_preserving_entails; solve_proper. Qed.
Lemma always_always P `{!PersistentP P} : P ⊣⊢ P. Lemma always_always P `{!PersistentP P} : P ⊣⊢ P.
Proof. apply (anti_symm ()); auto using always_elim. Qed. Proof. apply (anti_symm ()); auto using always_elim. Qed.
......
...@@ -149,13 +149,13 @@ Section entails. ...@@ -149,13 +149,13 @@ Section entails.
Context {M : ucmraT}. Context {M : ucmraT}.
Implicit Types P Q : uPred M. Implicit Types P Q : uPred M.
Global Instance: PreOrder (@uPred_entails M). Global Instance entails_po : PreOrder (@uPred_entails M).
Proof. Proof.
split. split.
- by intros P; split=> x i. - by intros P; split=> x i.
- by intros P Q Q' HP HQ; split=> x i ??; apply HQ, HP. - by intros P Q Q' HP HQ; split=> x i ??; apply HQ, HP.
Qed. Qed.
Global Instance: AntiSymm (⊣⊢) (@uPred_entails M). Global Instance entails_anti_sym : AntiSymm (⊣⊢) (@uPred_entails M).
Proof. intros P Q HPQ HQP; split=> x n; by split; [apply HPQ|apply HQP]. Qed. Proof. intros P Q HPQ HQP; split=> x n; by split; [apply HPQ|apply HQP]. Qed.
Lemma equiv_spec P Q : (P ⊣⊢ Q) (P Q) (Q P). Lemma equiv_spec P Q : (P ⊣⊢ Q) (P Q) (Q P).
...@@ -179,28 +179,15 @@ Proof. by intros ->. Qed. ...@@ -179,28 +179,15 @@ Proof. by intros ->. Qed.
Lemma entails_equiv_r (P Q R : uPred M) : (P Q) (Q ⊣⊢ R) (P R). Lemma entails_equiv_r (P Q R : uPred M) : (P Q) (Q ⊣⊢ R) (P R).
Proof. by intros ? <-. Qed. Proof. by intros ? <-. Qed.
Lemma entails_lim (P Q : chain (uPredC M)) : Lemma entails_lim (cP cQ : chain (uPredC M)) :
( n, P n Q n) compl P compl Q. ( n, cP n cQ n) compl cP compl cQ.
Proof. Proof.
intros Hlim. split. intros n m Hval HP. intros Hlim; split=> n m ? HP.
eapply uPred_holds_ne, Hlim, HP; eauto using conv_compl. eapply uPred_holds_ne, Hlim, HP; eauto using conv_compl.
Qed. Qed.
Lemma entails_lim' {T : ofeT} `{Cofe T} (P Q : T uPredC M) Lemma limit_preserving_entails `{Cofe A} (Φ Ψ : A uPred M) :
`{!NonExpansive P} `{!NonExpansive Q} (c : chain T) : NonExpansive Φ NonExpansive Ψ LimitPreserving (λ x, Φ x Ψ x).
( n, P (c n) Q (c n)) P (compl c) Q (compl c). Proof. intros c Hc. rewrite -!compl_chain_map /=. by apply entails_lim. Qed.
Proof.
set (cP := chain_map P c). set (cQ := chain_map Q c).
rewrite -!compl_chain_map=>HPQ. exact: entails_lim.
Qed.
End entails. End entails.
Ltac entails_lim c :=
pattern (compl c);
match goal with
| |- (λ o, ?P ?Q) ?x => change (((λ o, P) x) (λ o, Q) x)
end;
apply entails_lim'.
End uPred. End uPred.
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment