Skip to content
Snippets Groups Projects
Commit 597ec42e authored by Robbert Krebbers's avatar Robbert Krebbers
Browse files

More consistent naming for `auth`.

This MR is a follow up on the renamings performed (implicitly) as part of
!215. This MR makes the following changes:

- `auth_both_frac_valid` and `auth_both_valid` are now of the same shape
  as `auth_both_frac_validN` and `auth_both_validN`. That is, both are
  now biimplications.
- The left-to-right  direction of `auth_both_frac_valid` and
  `auth_both_valid` only holds in case the camera is discrete. The
  right-to-left versions for non-discrete cameras are prefixed `_2`, the
  convention that we use throughout the development.
- Change the direction of lemmas like `auth_frag_valid` and
  `auth_auth_valid` so that it's consistent with the other lemmas. I.e.
  make sure that the ◯ and ● are always on the LHS of the biimplication.
parent 03f24a19
No related branches found
No related tags found
No related merge requests found
......@@ -150,7 +150,7 @@ Proof.
naive_solver eauto using cmra_validN_includedN.
Qed.
Lemma auth_frag_validN n a : {n} a {n} ( a).
Lemma auth_frag_validN n a : {n} ( a) {n} a.
Proof. done. Qed.
Lemma auth_auth_frac_validN n q a :
{n} ({q} a) {n} q {n} a.
......@@ -176,26 +176,29 @@ Proof.
rewrite auth_both_frac_validN -cmra_discrete_valid_iff frac_valid'. naive_solver.
Qed.
Lemma auth_frag_valid a : a ( a).
Lemma auth_frag_valid a : ( a) a.
Proof. done. Qed.
Lemma auth_auth_frac_valid q a : q a ({q} a).
Lemma auth_auth_frac_valid q a : ({q} a) q a.
Proof.
rewrite auth_valid_eq /=. apply and_iff_compat_l. split.
- intros. exists a. split; [done|].
split; by [apply ucmra_unit_leastN|apply cmra_valid_validN].
- intros H'. apply cmra_valid_validN. intros n.
by destruct (H' n) as [? [->%to_agree_injN [??]]].
- intros. exists a. split; [done|].
split; by [apply ucmra_unit_leastN|apply cmra_valid_validN].
Qed.
Lemma auth_auth_valid a : a ( a).
Proof. rewrite -auth_auth_frac_valid frac_valid'. naive_solver. Qed.
Lemma auth_both_frac_valid q a b : q a b a ({q} a b).
Lemma auth_auth_valid a : ( a) a.
Proof. rewrite auth_auth_frac_valid frac_valid'. naive_solver. Qed.
(* The reverse direction of the two lemmas below only holds if the camera is
discrete. *)
Lemma auth_both_frac_valid_2 q a b : q a b a ({q} a b).
Proof.
intros Val1 Val2 Incl. rewrite auth_valid_eq /=. split; [done|].
intros n. exists a. split; [done|]. rewrite left_id.
split; by [apply cmra_included_includedN|apply cmra_valid_validN].
Qed.
Lemma auth_both_valid a b : a b a ( a b).
Proof. intros ??. by apply auth_both_frac_valid. Qed.
Lemma auth_both_valid_2 a b : a b a ( a b).
Proof. intros ??. by apply auth_both_frac_valid_2. Qed.
Lemma auth_valid_discrete `{!CmraDiscrete A} x :
x match auth_auth_proj x with
......@@ -208,7 +211,7 @@ Proof.
setoid_rewrite <-(discrete_iff _ a).
setoid_rewrite <-cmra_discrete_valid_iff. naive_solver eauto using O.
Qed.
Lemma auth_frac_valid_discrete_2 `{!CmraDiscrete A} q a b :
Lemma auth_both_frac_valid `{!CmraDiscrete A} q a b :
({q} a b) q b a a.
Proof.
rewrite auth_valid_discrete /=. apply and_iff_compat_l.
......@@ -216,8 +219,8 @@ Proof.
- by intros [?[->%to_agree_inj]].
- naive_solver.
Qed.
Lemma auth_valid_discrete_2 `{!CmraDiscrete A} a b : ( a b) b a a.
Proof. rewrite auth_frac_valid_discrete_2 frac_valid'. naive_solver. Qed.
Lemma auth_both_valid `{!CmraDiscrete A} a b : ( a b) b a a.
Proof. rewrite auth_both_frac_valid frac_valid'. naive_solver. Qed.
Lemma auth_cmra_mixin : CmraMixin (auth A).
Proof.
......@@ -293,7 +296,7 @@ Proof. by rewrite /op /auth_op /= left_id. Qed.
Lemma auth_both_op a b : Auth (Some (1%Qp,to_agree a)) b a b.
Proof. by rewrite auth_both_frac_op. Qed.
Lemma auth_auth_frac_op p q a: {p} a {q} a {p + q} a.
Lemma auth_auth_frac_op p q a : {p + q} a {p} a {q} a.
Proof.
intros; split; simpl; last by rewrite left_id.
by rewrite -Some_op pair_op agree_idemp.
......
......@@ -49,7 +49,7 @@ Section frac_auth.
Lemma frac_auth_validN n a : {n} a {n} (●! a ◯! a).
Proof. by rewrite auth_both_validN. Qed.
Lemma frac_auth_valid a : a (●! a ◯! a).
Proof. intros. by apply auth_both_valid. Qed.
Proof. intros. by apply auth_both_valid_2. Qed.
Lemma frac_auth_agreeN n a b : {n} (●! a ◯! b) a {n} b.
Proof.
......@@ -67,7 +67,7 @@ Section frac_auth.
Proof. by rewrite auth_both_validN /= => -[/Some_pair_includedN [_ ?] _]. Qed.
Lemma frac_auth_included `{CmraDiscrete A} q a b :
(●! a ◯!{q} b) Some b Some a.
Proof. by rewrite auth_valid_discrete_2 /= => -[/Some_pair_included [_ ?] _]. Qed.
Proof. by rewrite auth_both_valid /= => -[/Some_pair_included [_ ?] _]. Qed.
Lemma frac_auth_includedN_total `{CmraTotal A} n q a b :
{n} (●! a ◯!{q} b) b {n} a.
Proof. intros. by eapply Some_includedN_total, frac_auth_includedN. Qed.
......
......@@ -108,7 +108,7 @@ Section auth.
Proof.
iIntros (??) "Hφ". rewrite /auth_own /auth_ctx.
iMod (own_alloc_strong ( f t f t) I) as (γ) "[% [Hγ Hγ']]";
[done|by apply auth_valid_discrete_2|].
[done|by apply auth_both_valid|].
iMod (inv_alloc N _ (auth_inv γ f φ) with "[-Hγ']") as "#?".
{ iNext. rewrite /auth_inv. iExists t. by iFrame. }
eauto.
......@@ -140,7 +140,7 @@ Section auth.
iIntros "[Hinv Hγf]". rewrite /auth_inv /auth_own.
iDestruct "Hinv" as (t) "[>Hγa Hφ]".
iModIntro. iExists t.
iDestruct (own_valid_2 with "Hγa Hγf") as % [? ?]%auth_valid_discrete_2.
iDestruct (own_valid_2 with "Hγa Hγf") as % [? ?]%auth_both_valid.
iSplit; first done. iFrame. iIntros (u b) "[% Hφ]".
iMod (own_update_2 with "Hγa Hγf") as "[Hγa Hγf]".
{ eapply auth_update; eassumption. }
......
......@@ -78,7 +78,7 @@ Lemma box_own_auth_agree γ b1 b2 :
box_own_auth γ ( Excl' b1) box_own_auth γ ( Excl' b2) b1 = b2⌝.
Proof.
rewrite /box_own_prop -own_op own_valid prod_validI /= and_elim_l.
by iDestruct 1 as % [[[] [=]%leibniz_equiv] ?]%auth_valid_discrete_2.
by iDestruct 1 as % [[[] [=]%leibniz_equiv] ?]%auth_both_valid.
Qed.
Lemma box_own_auth_update γ b1 b2 b3 :
......@@ -110,7 +110,7 @@ Proof.
iDestruct 1 as (Φ) "[#HeqP Hf]".
iMod (own_alloc_cofinite ( Excl' false Excl' false,
Some (to_agree (Next (iProp_unfold Q)))) (dom _ f))
as (γ) "[Hdom Hγ]"; first by (split; [apply auth_valid_discrete_2|]).
as (γ) "[Hdom Hγ]"; first by (split; [apply auth_both_valid|]).
rewrite pair_split. iDestruct "Hγ" as "[[Hγ Hγ'] #HγQ]".
iDestruct "Hdom" as % ?%not_elem_of_dom.
iMod (inv_alloc N _ (slice_inv γ Q) with "[Hγ]") as "#Hinv".
......
......@@ -76,7 +76,7 @@ Lemma gen_heap_init `{Countable L, !gen_heapPreG L V Σ} σ :
(|==> _ : gen_heapG L V Σ, gen_heap_ctx σ)%I.
Proof.
iMod (own_alloc ( to_gen_heap σ)) as (γ) "Hh".
{ rewrite -auth_auth_valid. exact: to_gen_heap_valid. }
{ rewrite auth_auth_valid. exact: to_gen_heap_valid. }
iModIntro. by iExists (GenHeapG L V Σ _ _ _ γ).
Qed.
......@@ -105,7 +105,7 @@ Section gen_heap.
Proof.
apply wand_intro_r.
rewrite mapsto_eq /mapsto_def -own_op -auth_frag_op own_valid discrete_valid.
f_equiv. rewrite -auth_frag_valid op_singleton singleton_valid pair_op.
f_equiv. rewrite auth_frag_valid op_singleton singleton_valid pair_op.
by intros [_ ?%agree_op_invL'].
Qed.
......@@ -154,7 +154,7 @@ Section gen_heap.
Proof.
iIntros "Hσ Hl". rewrite /gen_heap_ctx mapsto_eq /mapsto_def.
iDestruct (own_valid_2 with "Hσ Hl")
as %[Hl%gen_heap_singleton_included _]%auth_valid_discrete_2; auto.
as %[Hl%gen_heap_singleton_included _]%auth_both_valid; auto.
Qed.
Lemma gen_heap_update σ l v1 v2 :
......@@ -162,7 +162,7 @@ Section gen_heap.
Proof.
iIntros "Hσ Hl". rewrite /gen_heap_ctx mapsto_eq /mapsto_def.
iDestruct (own_valid_2 with "Hσ Hl")
as %[Hl%gen_heap_singleton_included _]%auth_valid_discrete_2.
as %[Hl%gen_heap_singleton_included _]%auth_both_valid.
iMod (own_update_2 with "Hσ Hl") as "[Hσ Hl]".
{ eapply auth_update, singleton_local_update,
(exclusive_local_update _ (1%Qp, to_agree (v2:leibnizC _)))=> //.
......
......@@ -111,7 +111,7 @@ Lemma proph_map_init `{Countable P, !proph_mapPreG P V PVS} pvs ps :
(|==> _ : proph_mapG P V PVS, proph_map_ctx pvs ps)%I.
Proof.
iMod (own_alloc ( to_proph_map )) as (γ) "Hh".
{ rewrite -auth_auth_valid. exact: to_proph_map_valid. }
{ rewrite auth_auth_valid. exact: to_proph_map_valid. }
iModIntro. iExists (ProphMapG P V PVS _ _ _ γ), ∅. iSplit; last by iFrame.
iPureIntro. split =>//.
Qed.
......@@ -153,7 +153,7 @@ Section proph_map.
Proof.
iIntros "[HR Hp]". iDestruct "HR" as (R) "[HP H●]". iDestruct "HP" as %[Hres Hdom].
rewrite /proph_map_ctx proph_eq /proph_def.
iDestruct (own_valid_2 with "H● Hp") as %[HR%proph_map_singleton_included _]%auth_valid_discrete_2.
iDestruct (own_valid_2 with "H● Hp") as %[HR%proph_map_singleton_included _]%auth_both_valid.
assert (vs = v :: proph_list_resolves pvs p) as ->.
{ rewrite (Hres p vs HR). simpl. by rewrite decide_True. }
iMod (own_update_2 with "H● Hp") as "[H● H◯]".
......
......@@ -198,7 +198,7 @@ Lemma wsat_alloc `{!invPreG Σ} : (|==> ∃ _ : invG Σ, wsat ∗ ownE ⊤)%I.
Proof.
iIntros.
iMod (own_alloc ( ( : gmap positive _))) as (γI) "HI";
first by rewrite -auth_auth_valid.
first by rewrite auth_auth_valid.
iMod (own_alloc (CoPset )) as (γE) "HE"; first done.
iMod (own_alloc (GSet )) as (γD) "HD"; first done.
iModIntro; iExists (WsatG _ _ _ _ γI γE γD).
......
......@@ -37,7 +37,7 @@ Section mono_proof.
Proof.
iIntros (Φ) "_ HΦ". rewrite -wp_fupd /newcounter /=. wp_lam. wp_alloc l as "Hl".
iMod (own_alloc ( (O:mnat) (O:mnat))) as (γ) "[Hγ Hγ']";
first by apply auth_valid_discrete_2.
first by apply auth_both_valid.
iMod (inv_alloc N _ (mcounter_inv γ l) with "[Hl Hγ]").
{ iNext. iExists 0%nat. by iFrame. }
iModIntro. iApply "HΦ". rewrite /mcounter; eauto 10.
......@@ -54,7 +54,7 @@ Section mono_proof.
wp_bind (CAS _ _ _). iInv N as (c') ">[Hγ Hl]".
destruct (decide (c' = c)) as [->|].
- iDestruct (own_valid_2 with "Hγ Hγf")
as %[?%mnat_included _]%auth_valid_discrete_2.
as %[?%mnat_included _]%auth_both_valid.
iMod (own_update_2 with "Hγ Hγf") as "[Hγ Hγf]".
{ apply auth_update, (mnat_local_update _ _ (S c)); auto. }
wp_cas_suc. iModIntro. iSplitL "Hl Hγ".
......@@ -75,7 +75,7 @@ Section mono_proof.
rewrite /read /=. wp_lam. iInv N as (c) ">[Hγ Hl]".
wp_load.
iDestruct (own_valid_2 with "Hγ Hγf")
as %[?%mnat_included _]%auth_valid_discrete_2.
as %[?%mnat_included _]%auth_both_valid.
iMod (own_update_2 with "Hγ Hγf") as "[Hγ Hγf]".
{ apply auth_update, (mnat_local_update _ _ c); auto. }
iModIntro. iSplitL "Hl Hγ"; [iNext; iExists c; by iFrame|].
......@@ -115,7 +115,7 @@ Section contrib_spec.
Proof.
iIntros (Φ) "_ HΦ". rewrite -wp_fupd /newcounter /=. wp_lam. wp_alloc l as "Hl".
iMod (own_alloc (●! O%nat ◯! 0%nat)) as (γ) "[Hγ Hγ']";
first by apply auth_valid_discrete_2.
first by apply auth_both_valid.
iMod (inv_alloc N _ (ccounter_inv γ l) with "[Hl Hγ]").
{ iNext. iExists 0%nat. by iFrame. }
iModIntro. iApply "HΦ". rewrite /ccounter_ctx /ccounter; eauto 10.
......
......@@ -76,7 +76,7 @@ Section proof.
iIntros (Φ) "HR HΦ". rewrite -wp_fupd. wp_lam.
wp_alloc ln as "Hln". wp_alloc lo as "Hlo".
iMod (own_alloc ( (Excl' 0%nat, GSet ) (Excl' 0%nat, GSet ))) as (γ) "[Hγ Hγ']".
{ by apply auth_valid_discrete_2. }
{ by apply auth_both_valid. }
iMod (inv_alloc _ _ (lock_inv γ lo ln R) with "[-HΦ]").
{ iNext. rewrite /lock_inv.
iExists 0%nat, 0%nat. iFrame. iLeft. by iFrame. }
......@@ -141,14 +141,14 @@ Section proof.
iInv N as (o' n) "(>Hlo & >Hln & >Hauth & Haown)".
wp_load.
iDestruct (own_valid_2 with "Hauth Hγo") as
%[[<-%Excl_included%leibniz_equiv _]%prod_included _]%auth_valid_discrete_2.
%[[<-%Excl_included%leibniz_equiv _]%prod_included _]%auth_both_valid.
iModIntro. iSplitL "Hlo Hln Hauth Haown".
{ iNext. iExists o, n. by iFrame. }
wp_pures.
iInv N as (o' n') "(>Hlo & >Hln & >Hauth & Haown)".
iApply wp_fupd. wp_store.
iDestruct (own_valid_2 with "Hauth Hγo") as
%[[<-%Excl_included%leibniz_equiv _]%prod_included _]%auth_valid_discrete_2.
%[[<-%Excl_included%leibniz_equiv _]%prod_included _]%auth_both_valid.
iDestruct "Haown" as "[[Hγo' _]|Haown]".
{ iDestruct (own_valid_2 with "Hγo Hγo'") as %[[] ?]. }
iMod (own_update_2 with "Hauth Hγo") as "[Hauth Hγo]".
......
......@@ -54,7 +54,7 @@ Proof.
intros Hwp. apply (wp_adequacy Σ _).
iIntros (? κs).
iMod (own_alloc ( (Excl' σ) (Excl' σ))) as (γσ) "[Hσ Hσf]";
first by apply auth_valid_discrete_2.
first by apply auth_both_valid.
iModIntro. iExists (λ σ κs, own γσ ( (Excl' σ)))%I.
iFrame "Hσ".
iApply (Hwp (OwnPG _ _ _ _ γσ)). rewrite /ownP. iFrame.
......@@ -70,14 +70,14 @@ Proof.
intros Hwp Hsteps. eapply (wp_invariance Σ Λ s e σ1 t2 σ2 _)=> //.
iIntros (? κs κs').
iMod (own_alloc ( (Excl' σ1) (Excl' σ1))) as (γσ) "[Hσ Hσf]";
first by apply auth_valid_discrete_2.
first by apply auth_both_valid.
iExists (λ σ κs' _, own γσ ( (Excl' σ)))%I, (λ _, True%I).
iFrame "Hσ".
iMod (Hwp (OwnPG _ _ _ _ γσ) with "[Hσf]") as "[$ H]";
first by rewrite /ownP; iFrame.
iIntros "!> Hσ". iMod "H" as (σ2') "[Hσf %]". rewrite /ownP.
iDestruct (own_valid_2 with "Hσ Hσf")
as %[Hp%Excl_included _]%auth_valid_discrete_2; simplify_eq; auto.
as %[Hp%Excl_included _]%auth_both_valid; simplify_eq; auto.
Qed.
......@@ -91,7 +91,7 @@ Section lifting.
Lemma ownP_eq σ1 σ2 κs n : state_interp σ1 κs n -∗ ownP σ2 -∗ σ1 = σ2⌝.
Proof.
iIntros "Hσ● Hσ◯". rewrite /ownP.
iDestruct (own_valid_2 with "Hσ● Hσ◯") as %[Hps _]%auth_valid_discrete_2.
iDestruct (own_valid_2 with "Hσ● Hσ◯") as %[Hps _]%auth_both_valid.
by pose proof (leibniz_equiv _ _ (Excl_included _ _ Hps)) as ->.
Qed.
Lemma ownP_state_twice σ1 σ2 : ownP σ1 ownP σ2 False.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment