Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Terraform modules
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Pierre Roux
Iris
Commits
2b6c9e45
Commit
2b6c9e45
authored
3 years ago
by
Ralf Jung
Browse files
Options
Downloads
Patches
Plain Diff
add big_sepL2_pure
parent
dc4d36b2
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
iris/bi/big_op.v
+37
-0
37 additions, 0 deletions
iris/bi/big_op.v
with
37 additions
and
0 deletions
iris/bi/big_op.v
+
37
−
0
View file @
2b6c9e45
...
...
@@ -641,6 +641,43 @@ Section sep_list2.
⊢
([
∗
list
]
k
↦
y1
;
y2
∈
l1
;
l2
,
Φ
k
y1
y2
)
∧
([
∗
list
]
k
↦
y1
;
y2
∈
l1
;
l2
,
Ψ
k
y1
y2
)
.
Proof
.
auto
using
and_intro
,
big_sepL2_mono
,
and_elim_l
,
and_elim_r
.
Qed
.
Lemma
big_sepL2_pure_1
(
φ
:
nat
→
A
→
B
→
Prop
)
l1
l2
:
([
∗
list
]
k
↦
y1
;
y2
∈
l1
;
l2
,
⌜
φ
k
y1
y2
⌝
)
⊢@
{
PROP
}
⌜∀
k
y1
y2
,
l1
!!
k
=
Some
y1
→
l2
!!
k
=
Some
y2
→
φ
k
y1
y2
⌝.
Proof
.
rewrite
big_sepL2_alt
big_sepL_pure_1
.
rewrite
-
pure_and
.
f_equiv
=>
-
[
Hlen
Hlookup
]
k
y1
y2
Hy1
Hy2
.
eapply
(
Hlookup
k
(
y1
,
y2
))
.
rewrite
lookup_zip_with
Hy1
/=
Hy2
/=
//.
Qed
.
Lemma
big_sepL2_affinely_pure_2
(
φ
:
nat
→
A
→
B
→
Prop
)
l1
l2
:
length
l1
=
length
l2
→
<
affine
>
⌜∀
k
y1
y2
,
l1
!!
k
=
Some
y1
→
l2
!!
k
=
Some
y2
→
φ
k
y1
y2
⌝
⊢@
{
PROP
}
([
∗
list
]
k
↦
y1
;
y2
∈
l1
;
l2
,
<
affine
>
⌜
φ
k
y1
y2
⌝
)
.
Proof
.
intros
Hdom
.
rewrite
big_sepL2_alt
.
rewrite
-
big_sepL_affinely_pure_2
.
rewrite
affinely_and_r
-
pure_and
.
f_equiv
.
f_equiv
=>
-
Hforall
.
split
;
first
done
.
intros
k
[
y1
y2
]
(?
&
?
&
[
=
<-
<-
]
&
Hy1
&
Hy2
)
%
lookup_zip_with_Some
.
by
eapply
Hforall
.
Qed
.
(** The general backwards direction requires [BiAffine] to cover the empty case. *)
Lemma
big_sepL2_pure
`{
!
BiAffine
PROP
}
(
φ
:
nat
→
A
→
B
→
Prop
)
l1
l2
:
([
∗
list
]
k
↦
y1
;
y2
∈
l1
;
l2
,
⌜
φ
k
y1
y2
⌝
)
⊣⊢@
{
PROP
}
⌜
length
l1
=
length
l2
∧
∀
k
y1
y2
,
l1
!!
k
=
Some
y1
→
l2
!!
k
=
Some
y2
→
φ
k
y1
y2
⌝.
Proof
.
apply
(
anti_symm
(
⊢
))
.
{
rewrite
pure_and
.
apply
and_intro
.
-
apply
big_sepL2_length
.
-
apply
big_sepL2_pure_1
.
}
rewrite
-
(
affine_affinely
⌜_⌝%
I
)
.
rewrite
pure_and
-
affinely_and_r
.
apply
pure_elim_l
=>
Hdom
.
rewrite
big_sepL2_affinely_pure_2
//.
by
setoid_rewrite
affinely_elim
.
Qed
.
Lemma
big_sepL2_persistently
`{
BiAffine
PROP
}
Φ
l1
l2
:
<
pers
>
([
∗
list
]
k
↦
y1
;
y2
∈
l1
;
l2
,
Φ
k
y1
y2
)
⊣⊢
[
∗
list
]
k
↦
y1
;
y2
∈
l1
;
l2
,
<
pers
>
(
Φ
k
y1
y2
)
.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment