Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Terraform modules
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Pierre Roux
Iris
Commits
13c5c1ad
Commit
13c5c1ad
authored
4 years ago
by
Paolo G. Giarrusso
Committed by
Ralf Jung
4 years ago
Browse files
Options
Downloads
Patches
Plain Diff
Strengthen persistent_sep_dup for intuitionistic propositions
parent
7f8b01a9
No related branches found
No related tags found
No related merge requests found
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
CHANGELOG.md
+2
-0
2 additions, 0 deletions
CHANGELOG.md
theories/bi/derived_laws.v
+13
-5
13 additions, 5 deletions
theories/bi/derived_laws.v
theories/bi/lib/fractional.v
+1
-1
1 addition, 1 deletion
theories/bi/lib/fractional.v
with
16 additions
and
6 deletions
CHANGELOG.md
+
2
−
0
View file @
13c5c1ad
...
...
@@ -63,6 +63,8 @@ With this release, we dropped support for Coq 8.9.
`big_sepL2_forall`
,
`big_sepMS_forall`
,
`big_sepMS_impl`
, and
`big_sepMS_dup`
.
*
Remove
`bi.tactics`
with tactics that predate the proofmode (and that have not
been working properly for quite some time).
*
Strengthen
`persistent_sep_dup`
to support propositions that are persistent
and either affine or absorbing.
**Changes in `proofmode`:**
...
...
This diff is collapsed.
Click to expand it.
theories/bi/derived_laws.v
+
13
−
5
View file @
13c5c1ad
...
...
@@ -729,13 +729,13 @@ Proof.
rewrite
-
(
absorbing
emp
)
absorbingly_sep_l
left_id
//.
Qed
.
Lemma
sep_elim_l
P
Q
`{
H
:
TCOr
(
Affine
Q
)
(
Absorbing
P
)}
:
P
∗
Q
⊢
P
.
Lemma
sep_elim_l
P
Q
`{
H
QP
:
TCOr
(
Affine
Q
)
(
Absorbing
P
)}
:
P
∗
Q
⊢
P
.
Proof
.
destruct
H
.
destruct
H
QP
.
-
by
rewrite
(
affine
Q
)
right_id
.
-
by
rewrite
(
True_intro
Q
)
comm
.
Qed
.
Lemma
sep_elim_r
P
Q
`{
H
:
TCOr
(
Affine
P
)
(
Absorbing
Q
)}
:
P
∗
Q
⊢
Q
.
Lemma
sep_elim_r
P
Q
`{
TCOr
(
Affine
P
)
(
Absorbing
Q
)}
:
P
∗
Q
⊢
Q
.
Proof
.
by
rewrite
comm
sep_elim_l
.
Qed
.
Lemma
sep_and
P
Q
:
...
...
@@ -1365,8 +1365,16 @@ Proof.
-
by
rewrite
persistent_and_affinely_sep_r_1
affinely_elim
.
Qed
.
Lemma
persistent_sep_dup
P
`{
!
Persistent
P
,
!
Absorbing
P
}
:
P
⊣⊢
P
∗
P
.
Proof
.
by
rewrite
-
(
persistent_persistently
P
)
-
persistently_sep_dup
.
Qed
.
Lemma
persistent_sep_dup
P
`{
HP
:
!
TCOr
(
Affine
P
)
(
Absorbing
P
),
!
Persistent
P
}
:
P
⊣⊢
P
∗
P
.
Proof
.
destruct
HP
;
last
by
rewrite
-
(
persistent_persistently
P
)
-
persistently_sep_dup
.
apply
(
anti_symm
(
⊢
))
.
-
by
rewrite
-
{
1
}(
intuitionistic_intuitionistically
P
)
intuitionistically_sep_dup
intuitionistically_elim
.
-
by
rewrite
{
1
}(
affine
P
)
left_id
.
Qed
.
Lemma
persistent_entails_l
P
Q
`{
!
Persistent
Q
}
:
(
P
⊢
Q
)
→
P
⊢
Q
∗
P
.
Proof
.
intros
.
rewrite
-
persistent_and_sep_1
;
auto
.
Qed
.
...
...
This diff is collapsed.
Click to expand it.
theories/bi/lib/fractional.v
+
1
−
1
View file @
13c5c1ad
...
...
@@ -67,7 +67,7 @@ Section fractional.
(** Fractional and logical connectives *)
Global
Instance
persistent_fractional
P
:
Persistent
P
→
Absorbing
P
→
Fractional
(
λ
_,
P
)
.
Proof
.
intros
??
q
q'
.
by
apply
bi
.
persistent_sep_dup
.
Qed
.
Proof
.
intros
??
q
q'
.
apply
:
bi
.
persistent_sep_dup
.
Qed
.
Global
Instance
fractional_sep
Φ
Ψ
:
Fractional
Φ
→
Fractional
Ψ
→
Fractional
(
λ
q
,
Φ
q
∗
Ψ
q
)
%
I
.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment