Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Terraform modules
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Pierre Roux
Iris
Commits
12ac96cd
Commit
12ac96cd
authored
5 years ago
by
Ralf Jung
Browse files
Options
Downloads
Patches
Plain Diff
add pair_included, auth_frag_core, singleton_core_total
parent
9b2ad256
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
theories/algebra/auth.v
+2
-0
2 additions, 0 deletions
theories/algebra/auth.v
theories/algebra/cmra.v
+3
-0
3 additions, 0 deletions
theories/algebra/cmra.v
theories/algebra/gmap.v
+3
-0
3 additions, 0 deletions
theories/algebra/gmap.v
with
8 additions
and
0 deletions
theories/algebra/auth.v
+
2
−
0
View file @
12ac96cd
...
@@ -286,6 +286,8 @@ Lemma auth_frag_op a b : ◯ (a ⋅ b) = ◯ a ⋅ ◯ b.
...
@@ -286,6 +286,8 @@ Lemma auth_frag_op a b : ◯ (a ⋅ b) = ◯ a ⋅ ◯ b.
Proof
.
done
.
Qed
.
Proof
.
done
.
Qed
.
Lemma
auth_frag_mono
a
b
:
a
≼
b
→
◯
a
≼
◯
b
.
Lemma
auth_frag_mono
a
b
:
a
≼
b
→
◯
a
≼
◯
b
.
Proof
.
intros
[
c
->
]
.
rewrite
auth_frag_op
.
apply
cmra_included_l
.
Qed
.
Proof
.
intros
[
c
->
]
.
rewrite
auth_frag_op
.
apply
cmra_included_l
.
Qed
.
Lemma
auth_frag_core
a
:
core
(
◯
a
)
=
◯
(
core
a
)
.
Proof
.
done
.
Qed
.
Global
Instance
auth_frag_sep_homomorphism
:
Global
Instance
auth_frag_sep_homomorphism
:
MonoidHomomorphism
op
op
(
≡
)
(
@
auth_frag
A
)
.
MonoidHomomorphism
op
op
(
≡
)
(
@
auth_frag
A
)
.
...
...
This diff is collapsed.
Click to expand it.
theories/algebra/cmra.v
+
3
−
0
View file @
12ac96cd
...
@@ -1221,6 +1221,9 @@ Section prod.
...
@@ -1221,6 +1221,9 @@ Section prod.
Proof
.
done
.
Qed
.
Proof
.
done
.
Qed
.
Lemma
pair_valid
(
a
:
A
)
(
b
:
B
)
:
✓
(
a
,
b
)
↔
✓
a
∧
✓
b
.
Lemma
pair_valid
(
a
:
A
)
(
b
:
B
)
:
✓
(
a
,
b
)
↔
✓
a
∧
✓
b
.
Proof
.
done
.
Qed
.
Proof
.
done
.
Qed
.
Lemma
pair_included
(
a
a'
:
A
)
(
b
b'
:
B
)
:
(
a
,
b
)
≼
(
a'
,
b'
)
↔
a
≼
a'
∧
b
≼
b'
.
Proof
.
apply
prod_included
.
Qed
.
Lemma
pair_core
`{
!
CmraTotal
A
,
!
CmraTotal
B
}
(
a
:
A
)
(
b
:
B
)
:
Lemma
pair_core
`{
!
CmraTotal
A
,
!
CmraTotal
B
}
(
a
:
A
)
(
b
:
B
)
:
core
(
a
,
b
)
=
(
core
a
,
core
b
)
.
core
(
a
,
b
)
=
(
core
a
,
core
b
)
.
...
...
This diff is collapsed.
Click to expand it.
theories/algebra/gmap.v
+
3
−
0
View file @
12ac96cd
...
@@ -292,6 +292,9 @@ Lemma core_singleton' (i : K) (x : A) cx :
...
@@ -292,6 +292,9 @@ Lemma core_singleton' (i : K) (x : A) cx :
Proof
.
Proof
.
intros
(
cx'
&
?
&
->
)
%
equiv_Some_inv_r'
.
by
rewrite
(
core_singleton
_
_
cx'
)
.
intros
(
cx'
&
?
&
->
)
%
equiv_Some_inv_r'
.
by
rewrite
(
core_singleton
_
_
cx'
)
.
Qed
.
Qed
.
Lemma
singleton_core_total
`{
!
CmraTotal
A
}
(
i
:
K
)
(
x
:
A
)
:
core
({[
i
:=
x
]}
:
gmap
K
A
)
=
{[
i
:=
core
x
]}
.
Proof
.
apply
core_singleton
.
rewrite
cmra_pcore_core
//.
Qed
.
Lemma
op_singleton
(
i
:
K
)
(
x
y
:
A
)
:
Lemma
op_singleton
(
i
:
K
)
(
x
y
:
A
)
:
{[
i
:=
x
]}
⋅
{[
i
:=
y
]}
=
({[
i
:=
x
⋅
y
]}
:
gmap
K
A
)
.
{[
i
:=
x
]}
⋅
{[
i
:=
y
]}
=
({[
i
:=
x
⋅
y
]}
:
gmap
K
A
)
.
Proof
.
by
apply
(
merge_singleton
_
_
_
x
y
)
.
Qed
.
Proof
.
by
apply
(
merge_singleton
_
_
_
x
y
)
.
Qed
.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment