Skip to content
Snippets Groups Projects
Commit 0ee7cda1 authored by Lucien RAKOTOMALALA's avatar Lucien RAKOTOMALALA
Browse files

Update old names

Replace UIB_departure with maximal_departure
parent 0e1ed3d0
No related branches found
No related tags found
No related merge requests found
...@@ -144,14 +144,8 @@ Section switch_1. ...@@ -144,14 +144,8 @@ Section switch_1.
Definition beta_S1 : Fup := Definition beta_S1 : Fup :=
delta (hDev (alpha1 + alpha2 + alpha3)%F beta1)%:nngenum. delta (hDev (alpha1 + alpha2 + alpha3)%F beta1)%:nngenum.
Definition alpha1_S1 := ((alpha1 / beta_S1) + delta 0)%D.
Definition alpha2_S1 := ((alpha2 / beta_S1) + delta 0)%D.
Definition alpha3_S1 := ((alpha3 / beta_S1) + delta 0)%D.
Definition alpha_S1 : Fup^3 := finfun_of_tuple [tuple alpha1; alpha2; alpha3]. Definition alpha_S1 : Fup^3 := finfun_of_tuple [tuple alpha1; alpha2; alpha3].
Let alpha_S1_out : Fup^3 := finfun_of_tuple [tuple alpha1_S1; alpha2_S1; alpha3_S1].
Lemma min_residual_service_S1 i : Lemma min_residual_service_S1 i :
is_min_service is_min_service
(residual_server_constr S1 i [ffun i => alpha_S1 i : F]) beta_S1. (residual_server_constr S1 i [ffun i => alpha_S1 i : F]) beta_S1.
...@@ -162,6 +156,12 @@ have -> : (alpha1 + alpha2 + alpha3 = \sum_j alpha_S1 j)%F. ...@@ -162,6 +156,12 @@ have -> : (alpha1 + alpha2 + alpha3 = \sum_j alpha_S1 j)%F.
exact: FIFO_delay. exact: FIFO_delay.
Qed. Qed.
Definition alpha1_S1 := ((alpha1 / beta_S1) + delta 0)%D.
Definition alpha2_S1 := ((alpha2 / beta_S1) + delta 0)%D.
Definition alpha3_S1 := ((alpha3 / beta_S1) + delta 0)%D.
Let alpha_S1_out : Fup^3 := finfun_of_tuple [tuple alpha1_S1; alpha2_S1; alpha3_S1].
Lemma alpha_S1_correct i : Lemma alpha_S1_correct i :
is_maximal_arrival (finfun_of_tuple [tuple F1; F2; F3] i) (alpha_S1 i). is_maximal_arrival (finfun_of_tuple [tuple F1; F2; F3] i) (alpha_S1 i).
Proof. Proof.
...@@ -171,7 +171,7 @@ case: i => -[| [| [|//]]] ?; rewrite !ffunE. ...@@ -171,7 +171,7 @@ case: i => -[| [| [|//]]] ?; rewrite !ffunE.
- exact: Halpha3. - exact: Halpha3.
Qed. Qed.
Lemma UIB_departure_S1 i : Lemma maximal_departure_S1 i :
is_maximal_arrival is_maximal_arrival
(finfun_of_tuple [tuple F1_S1; F2_S1; F3_S1] i) (finfun_of_tuple [tuple F1_S1; F2_S1; F3_S1] i)
(alpha_S1_out i). (alpha_S1_out i).
...@@ -192,7 +192,7 @@ Section switch_2_1. ...@@ -192,7 +192,7 @@ Section switch_2_1.
Lemma Halpha1_S2 : is_maximal_arrival F1_S1 alpha1_S1. Lemma Halpha1_S2 : is_maximal_arrival F1_S1 alpha1_S1.
Proof. Proof.
move: (UIB_departure_S1 (inord 0)). move: (maximal_departure_S1 (inord 0)).
by rewrite !ffunE /inord /insubd insubT. by rewrite !ffunE /inord /insubd insubT.
Qed. Qed.
...@@ -212,7 +212,7 @@ have {1}-> : [ffun=> alpha1_S1 : F] = [ffun i : 'I_1 => [ffun=> alpha1_S1] i : F ...@@ -212,7 +212,7 @@ have {1}-> : [ffun=> alpha1_S1 : F] = [ffun i : 'I_1 => [ffun=> alpha1_S1] i : F
by apply: FIFO_delay; [exact: FIFO_one_server|]. by apply: FIFO_delay; [exact: FIFO_one_server|].
Qed. Qed.
Lemma UIB_departure_S2_1 : is_maximal_arrival F1_S2 alpha1_S2. Lemma maximal_departure_S2_1 : is_maximal_arrival F1_S2 alpha1_S2.
Proof. Proof.
apply: maximal_arrival_F_min; [|apply: maximal_arrival_delta_0]; apply: maximal_arrival_F_min; [|apply: maximal_arrival_delta_0];
apply: output_arrival_curve_mp_Fup; apply: output_arrival_curve_mp_Fup;
...@@ -228,7 +228,7 @@ Section switch_2_2. ...@@ -228,7 +228,7 @@ Section switch_2_2.
Lemma Halpha2_S2 : is_maximal_arrival F2_S1 alpha2_S1. Lemma Halpha2_S2 : is_maximal_arrival F2_S1 alpha2_S1.
Proof. Proof.
move: (UIB_departure_S1 (inord 1)). move: (maximal_departure_S1 (inord 1)).
by rewrite !ffunE /inord /insubd insubT. by rewrite !ffunE /inord /insubd insubT.
Qed. Qed.
...@@ -248,7 +248,7 @@ have {1}-> : [ffun=> alpha2_S1 : F] = [ffun i : 'I_1 => [ffun=> alpha2_S1] i : F ...@@ -248,7 +248,7 @@ have {1}-> : [ffun=> alpha2_S1 : F] = [ffun i : 'I_1 => [ffun=> alpha2_S1] i : F
by apply: FIFO_delay; [exact: FIFO_one_server|]. by apply: FIFO_delay; [exact: FIFO_one_server|].
Qed. Qed.
Lemma UIB_departure_S2_2 : is_maximal_arrival F2_S2 alpha2_S2. Lemma maximal_departure_S2_2 : is_maximal_arrival F2_S2 alpha2_S2.
Proof. Proof.
apply: maximal_arrival_F_min; [|apply: maximal_arrival_delta_0]; apply: maximal_arrival_F_min; [|apply: maximal_arrival_delta_0];
apply: output_arrival_curve_mp_Fup; apply: output_arrival_curve_mp_Fup;
...@@ -268,7 +268,7 @@ Definition alpha3_S2 := ((alpha3_S1 / beta_S2_3) + delta 0)%D. ...@@ -268,7 +268,7 @@ Definition alpha3_S2 := ((alpha3_S1 / beta_S2_3) + delta 0)%D.
Lemma Halpha3_S2 : is_maximal_arrival F3_S1 alpha3_S1. Lemma Halpha3_S2 : is_maximal_arrival F3_S1 alpha3_S1.
Proof. Proof.
move: (UIB_departure_S1 (inord 2)). move: (maximal_departure_S1 (inord 2)).
by rewrite !ffunE /inord /insubd insubT. by rewrite !ffunE /inord /insubd insubT.
Qed. Qed.
...@@ -284,7 +284,7 @@ have {1}-> : [ffun=> alpha3_S1 : F] = [ffun i : 'I_1 => [ffun=> alpha3_S1] i : F ...@@ -284,7 +284,7 @@ have {1}-> : [ffun=> alpha3_S1 : F] = [ffun i : 'I_1 => [ffun=> alpha3_S1] i : F
by apply: FIFO_delay; [exact: FIFO_one_server|]. by apply: FIFO_delay; [exact: FIFO_one_server|].
Qed. Qed.
Lemma UIB_departure_S2_3 : is_maximal_arrival F3_S2 alpha3_S2. Lemma maximal_departure_S2_3 : is_maximal_arrival F3_S2 alpha3_S2.
Proof. Proof.
apply: maximal_arrival_F_min; [|apply: maximal_arrival_delta_0]; apply: maximal_arrival_F_min; [|apply: maximal_arrival_delta_0];
apply: output_arrival_curve_mp_Fup; apply: output_arrival_curve_mp_Fup;
...@@ -319,13 +319,13 @@ Lemma alpha_S3_correct i : ...@@ -319,13 +319,13 @@ Lemma alpha_S3_correct i :
is_maximal_arrival (finfun_of_tuple [tuple F1_S2; F4] i) (alpha_S3 i). is_maximal_arrival (finfun_of_tuple [tuple F1_S2; F4] i) (alpha_S3 i).
Proof. Proof.
case: i => -[| [|//]] ?; rewrite !ffunE. case: i => -[| [|//]] ?; rewrite !ffunE.
- exact: UIB_departure_S2_1. - exact: maximal_departure_S2_1.
- exact: Halpha4. - exact: Halpha4.
Qed. Qed.
Let alpha_S3_out := finfun_of_tuple [tuple alpha1_S3; alpha4_S3]. Let alpha_S3_out := finfun_of_tuple [tuple alpha1_S3; alpha4_S3].
Lemma UIB_departure_S3 i : Lemma maximal_departure_S3 i :
is_maximal_arrival is_maximal_arrival
(finfun_of_tuple [tuple F1_S3; F4_S3] i) (alpha_S3_out i). (finfun_of_tuple [tuple F1_S3; F4_S3] i) (alpha_S3_out i).
Proof. Proof.
...@@ -333,7 +333,7 @@ case: i => -[| [|//]] Hi; rewrite !ffunE; unfold_tnth; ...@@ -333,7 +333,7 @@ case: i => -[| [|//]] Hi; rewrite !ffunE; unfold_tnth;
( apply: maximal_arrival_F_min; [|apply: maximal_arrival_delta_0]; ( apply: maximal_arrival_F_min; [|apply: maximal_arrival_delta_0];
apply: output_arrival_curve_mp_Fup; apply: output_arrival_curve_mp_Fup;
[|exact: (@min_residual_service_S3 (Ordinal Hi)) [|exact: (@min_residual_service_S3 (Ordinal Hi))
|(exact: UIB_departure_S2_1 || by [])]; |(exact: maximal_departure_S2_1 || by [])];
eexists; eexists; split; [exact: H_server_S3|]; eexists; eexists; split; [exact: H_server_S3|];
rewrite !ffunE; split=> //; split=> // j; rewrite !ffunE; split=> //; split=> // j;
rewrite ffunE; exact: alpha_S3_correct). rewrite ffunE; exact: alpha_S3_correct).
...@@ -364,13 +364,13 @@ Lemma alpha_S4_correct i : ...@@ -364,13 +364,13 @@ Lemma alpha_S4_correct i :
is_maximal_arrival (finfun_of_tuple [tuple F3_S2; F5] i) (alpha_S4 i). is_maximal_arrival (finfun_of_tuple [tuple F3_S2; F5] i) (alpha_S4 i).
Proof. Proof.
case: i => -[| [|//]] ?; rewrite !ffunE. case: i => -[| [|//]] ?; rewrite !ffunE.
- exact: UIB_departure_S2_3. - exact: maximal_departure_S2_3.
- exact: Halpha5. - exact: Halpha5.
Qed. Qed.
Let alpha_S4_out := finfun_of_tuple [tuple alpha3_S4; alpha5_S4]. Let alpha_S4_out := finfun_of_tuple [tuple alpha3_S4; alpha5_S4].
Lemma UIB_departure_S4 i : Lemma maximal_departure_S4 i :
is_maximal_arrival is_maximal_arrival
(finfun_of_tuple [tuple F3_S4; F5_S4] i) (alpha_S4_out i). (finfun_of_tuple [tuple F3_S4; F5_S4] i) (alpha_S4_out i).
Proof. Proof.
...@@ -378,7 +378,7 @@ case: i => -[| [|//]] Hi; rewrite !ffunE; unfold_tnth; ...@@ -378,7 +378,7 @@ case: i => -[| [|//]] Hi; rewrite !ffunE; unfold_tnth;
( apply: maximal_arrival_F_min; [|apply: maximal_arrival_delta_0]; ( apply: maximal_arrival_F_min; [|apply: maximal_arrival_delta_0];
apply: output_arrival_curve_mp_Fup; apply: output_arrival_curve_mp_Fup;
[|exact: (@min_residual_service_S4 (Ordinal Hi)) [|exact: (@min_residual_service_S4 (Ordinal Hi))
|(exact: UIB_departure_S2_3 || by [])]; |(exact: maximal_departure_S2_3 || by [])];
eexists; eexists; split; [exact: H_server_S4|]; eexists; eexists; split; [exact: H_server_S4|];
rewrite !ffunE; split=> //; split=> // j; rewrite !ffunE; split=> //; split=> // j;
rewrite ffunE; exact: alpha_S4_correct). rewrite ffunE; exact: alpha_S4_correct).
...@@ -390,13 +390,13 @@ Section switch_5_1. ...@@ -390,13 +390,13 @@ Section switch_5_1.
Lemma Halpha1_S5 : is_maximal_arrival F1_S3 alpha1_S3. Lemma Halpha1_S5 : is_maximal_arrival F1_S3 alpha1_S3.
Proof. Proof.
move: (UIB_departure_S3 (inord 0)). move: (maximal_departure_S3 (inord 0)).
by rewrite !ffunE /inord /insubd insubT. by rewrite !ffunE /inord /insubd insubT.
Qed. Qed.
Lemma Halpha3_S5 : is_maximal_arrival F3_S4 alpha3_S4. Lemma Halpha3_S5 : is_maximal_arrival F3_S4 alpha3_S4.
Proof. Proof.
move: (UIB_departure_S4 (inord 0)). move: (maximal_departure_S4 (inord 0)).
by rewrite !ffunE /inord /insubd insubT. by rewrite !ffunE /inord /insubd insubT.
Qed. Qed.
...@@ -421,7 +421,7 @@ Lemma alpha_S5_correct i : ...@@ -421,7 +421,7 @@ Lemma alpha_S5_correct i :
Proof. Proof.
case: i => -[| [| [|//]]] ?; rewrite !ffunE. case: i => -[| [| [|//]]] ?; rewrite !ffunE.
- exact: Halpha1_S5. - exact: Halpha1_S5.
- exact: UIB_departure_S2_2. - exact: maximal_departure_S2_2.
- exact: Halpha3_S5. - exact: Halpha3_S5.
Qed. Qed.
...@@ -431,7 +431,7 @@ Definition alpha3_S5 := ((alpha3_S4 / beta_S5_1) + delta 0)%D. ...@@ -431,7 +431,7 @@ Definition alpha3_S5 := ((alpha3_S4 / beta_S5_1) + delta 0)%D.
Let alpha_S5_out := finfun_of_tuple [tuple alpha1_S5; alpha2_S5; alpha3_S5]. Let alpha_S5_out := finfun_of_tuple [tuple alpha1_S5; alpha2_S5; alpha3_S5].
Lemma UIB_departure_S5 i : Lemma maximal_departure_S5 i :
is_maximal_arrival is_maximal_arrival
(finfun_of_tuple [tuple F1_S5; F2_S5; F3_S5] i) (finfun_of_tuple [tuple F1_S5; F2_S5; F3_S5] i)
(alpha_S5_out i). (alpha_S5_out i).
...@@ -440,7 +440,7 @@ case: i => -[| [| [|//]]] Hi; rewrite !ffunE; unfold_tnth; ...@@ -440,7 +440,7 @@ case: i => -[| [| [|//]]] Hi; rewrite !ffunE; unfold_tnth;
( apply: maximal_arrival_F_min; [|apply: maximal_arrival_delta_0]; ( apply: maximal_arrival_F_min; [|apply: maximal_arrival_delta_0];
apply: output_arrival_curve_mp_Fup; apply: output_arrival_curve_mp_Fup;
[|exact: (@min_residual_service_S5_1 (Ordinal Hi))|]); [|exact: (@min_residual_service_S5_1 (Ordinal Hi))|]);
[|exact: Halpha1_S5| |exact: UIB_departure_S2_2| | exact: Halpha3_S5]; [|exact: Halpha1_S5| |exact: maximal_departure_S2_2| | exact: Halpha3_S5];
(eexists; eexists; split; [exact: H_server_S5_1|]; (eexists; eexists; split; [exact: H_server_S5_1|];
rewrite !ffunE; split=> //; split=> // j; rewrite !ffunE; split=> //; split=> // j;
rewrite ffunE; exact: alpha_S5_correct). rewrite ffunE; exact: alpha_S5_correct).
...@@ -452,13 +452,13 @@ Section switch_5_2. ...@@ -452,13 +452,13 @@ Section switch_5_2.
Lemma Halpha4_S5 : is_maximal_arrival F4_S3 alpha4_S3. Lemma Halpha4_S5 : is_maximal_arrival F4_S3 alpha4_S3.
Proof. Proof.
move: (UIB_departure_S3 (inord 1)). move: (maximal_departure_S3 (inord 1)).
by rewrite !ffunE /inord /insubd insubT. by rewrite !ffunE /inord /insubd insubT.
Qed. Qed.
Lemma Halpha5_S5 : is_maximal_arrival F5_S4 alpha5_S4. Lemma Halpha5_S5 : is_maximal_arrival F5_S4 alpha5_S4.
Proof. Proof.
move: (UIB_departure_S4 (inord 1)). move: (maximal_departure_S4 (inord 1)).
by rewrite !ffunE /inord /insubd insubT. by rewrite !ffunE /inord /insubd insubT.
Qed. Qed.
...@@ -490,7 +490,7 @@ Definition alpha5_S5 := ((alpha5_S4 / beta_S5_2) + delta 0)%D. ...@@ -490,7 +490,7 @@ Definition alpha5_S5 := ((alpha5_S4 / beta_S5_2) + delta 0)%D.
Let alpha_S5_2_out := finfun_of_tuple [tuple alpha4_S5 ; alpha5_S5]. Let alpha_S5_2_out := finfun_of_tuple [tuple alpha4_S5 ; alpha5_S5].
Lemma UIB_departure_S6 i : Lemma maximal_departure_S5_2 i :
is_maximal_arrival is_maximal_arrival
(finfun_of_tuple [tuple F4_S5; F5_S5] i) (finfun_of_tuple [tuple F4_S5; F5_S5] i)
(alpha_S5_2_out i). (alpha_S5_2_out i).
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment