Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Terraform modules
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Pierre Roux
Iris
Commits
f91439a6
Commit
f91439a6
authored
5 years ago
by
Ralf Jung
Browse files
Options
Downloads
Patches
Plain Diff
style improvements
parent
754c71b8
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
theories/base_logic/lib/invariants.v
+76
-81
76 additions, 81 deletions
theories/base_logic/lib/invariants.v
with
76 additions
and
81 deletions
theories/base_logic/lib/invariants.v
+
76
−
81
View file @
f91439a6
...
...
@@ -6,35 +6,31 @@ From iris.base_logic.lib Require Import wsat.
Set
Default
Proof
Using
"Type"
.
Import
uPred
.
Lemma
fresh_inv_name
(
E
:
gset
positive
)
N
:
∃
i
,
i
∉
E
∧
i
∈
(
↑
N
:
coPset
)
.
Proof
.
exists
(
coPpick
(
↑
N
∖
gset_to_coPset
E
))
.
rewrite
-
elem_of_gset_to_coPset
(
comm
and
)
-
elem_of_difference
.
apply
coPpick_elem_of
=>
Hfin
.
eapply
nclose_infinite
,
(
difference_finite_inv
_
_),
Hfin
.
apply
gset_to_coPset_finite
.
Qed
.
(** Semantic Invariants *)
Definition
inv_def
`{
!
invG
Σ
}
(
N
:
namespace
)
(
P
:
iProp
Σ
)
:
iProp
Σ
:=
(
□
∀
E
,
⌜↑
N
⊆
E
⌝
→
|
=
{
E
,
E
∖
↑
N
}=>
▷
P
∗
(
▷
P
=
{
E
∖
↑
N
,
E
}
=∗
True
))
%
I
.
Definition
inv_aux
:
seal
(
@
inv_def
)
.
by
eexists
.
Qed
.
Definition
inv
{
Σ
i
}
:=
inv_aux
.(
unseal
)
Σ
i
.
Definition
inv_eq
:
@
inv
=
@
inv_def
:=
inv_aux
.(
seal_eq
)
.
Instance
:
Params
(
@
inv
)
3
:=
{}
.
Typeclasses
Opaque
inv
.
(** * Invariants *)
Section
inv
.
Context
`{
!
invG
Σ
}
.
Implicit
Types
i
:
positive
.
Implicit
Types
N
:
namespace
.
Implicit
Types
E
:
coPset
.
Implicit
Types
P
Q
R
:
iProp
Σ
.
(** Internal
backing store
of invariants *)
Definition
internal_inv_def
(
N
:
namespace
)
(
P
:
iProp
Σ
)
:
iProp
Σ
:=
(**
**
Internal
model
of invariants *)
Definition
own_inv
(
N
:
namespace
)
(
P
:
iProp
Σ
)
:
iProp
Σ
:=
(
∃
i
P'
,
⌜
i
∈
(
↑
N
:
coPset
)
⌝
∧
▷
□
(
P'
↔
P
)
∧
ownI
i
P'
)
%
I
.
Definition
internal_inv_aux
:
seal
(
@
internal_inv_def
)
.
by
eexists
.
Qed
.
Definition
internal_inv
:=
internal_inv_aux
.(
unseal
)
.
Definition
internal_inv_eq
:
@
internal_inv
=
@
internal_inv_def
:=
internal_inv_aux
.(
seal_eq
)
.
Typeclasses
Opaque
internal_inv
.
Global
Instance
internal_inv_persistent
N
P
:
Persistent
(
internal_inv
N
P
)
.
Proof
.
rewrite
internal_inv_eq
/
internal_inv
;
apply
_
.
Qed
.
Lemma
internal
_inv_open
E
N
P
:
↑
N
⊆
E
→
internal
_inv
N
P
=
{
E
,
E
∖↑
N
}
=∗
▷
P
∗
(
▷
P
=
{
E
∖↑
N
,
E
}
=∗
True
)
.
Lemma
own
_inv_open
E
N
P
:
↑
N
⊆
E
→
own
_inv
N
P
=
{
E
,
E
∖↑
N
}
=∗
▷
P
∗
(
▷
P
=
{
E
∖↑
N
,
E
}
=∗
True
)
.
Proof
.
rewrite
internal_inv_eq
/
internal_inv_def
uPred_fupd_eq
/
uPred_fupd_def
.
rewrite
uPred_fupd_eq
/
uPred_fupd_def
.
iDestruct
1
as
(
i
P'
)
"(Hi & #HP' & #HiP)"
.
iDestruct
"Hi"
as
%
?
%
elem_of_subseteq_singleton
.
rewrite
{
1
4
}(
union_difference_L
(
↑
N
)
E
)
//
ownE_op
;
last
set_solver
.
...
...
@@ -46,18 +42,27 @@ Section inv.
iApply
"HP'"
.
iFrame
.
Qed
.
Lemma
internal_inv_alloc
N
E
P
:
▷
P
=
{
E
}
=∗
internal_inv
N
P
.
Lemma
fresh_inv_name
(
E
:
gset
positive
)
N
:
∃
i
,
i
∉
E
∧
i
∈
(
↑
N
:
coPset
)
.
Proof
.
exists
(
coPpick
(
↑
N
∖
gset_to_coPset
E
))
.
rewrite
-
elem_of_gset_to_coPset
(
comm
and
)
-
elem_of_difference
.
apply
coPpick_elem_of
=>
Hfin
.
eapply
nclose_infinite
,
(
difference_finite_inv
_
_),
Hfin
.
apply
gset_to_coPset_finite
.
Qed
.
Lemma
own_inv_alloc
N
E
P
:
▷
P
=
{
E
}
=∗
own_inv
N
P
.
Proof
.
rewrite
internal_inv_eq
/
internal_inv_def
uPred_fupd_eq
.
iIntros
"HP [Hw $]"
.
rewrite
uPred_fupd_eq
.
iIntros
"HP [Hw $]"
.
iMod
(
ownI_alloc
(.
∈
(
↑
N
:
coPset
))
P
with
"[$HP $Hw]"
)
as
(
i
?)
"[$ ?]"
;
auto
using
fresh_inv_name
.
do
2
iModIntro
.
iExists
i
,
P
.
rewrite
-
(
iff_refl
True
%
I
)
.
auto
.
Qed
.
Lemma
internal
_inv_alloc_open
N
E
P
:
↑
N
⊆
E
→
(|
=
{
E
,
E
∖↑
N
}=>
internal
_inv
N
P
∗
(
▷
P
=
{
E
∖↑
N
,
E
}
=∗
True
))
%
I
.
Lemma
own
_inv_alloc_open
N
E
P
:
↑
N
⊆
E
→
(|
=
{
E
,
E
∖↑
N
}=>
own
_inv
N
P
∗
(
▷
P
=
{
E
∖↑
N
,
E
}
=∗
True
))
%
I
.
Proof
.
rewrite
internal_inv_eq
/
internal_inv_def
uPred_fupd_eq
.
iIntros
(
Sub
)
"[Hw HE]"
.
rewrite
uPred_fupd_eq
.
iIntros
(
Sub
)
"[Hw HE]"
.
iMod
(
ownI_alloc_open
(.
∈
(
↑
N
:
coPset
))
P
with
"Hw"
)
as
(
i
?)
"(Hw & #Hi & HD)"
;
auto
using
fresh_inv_name
.
iAssert
(
ownE
{[
i
]}
∗
ownE
(
↑
N
∖
{[
i
]})
∗
ownE
(
E
∖
↑
N
))
%
I
...
...
@@ -75,85 +80,62 @@ Section inv.
rewrite
assoc_L
-!
union_difference_L
//
;
set_solver
.
Qed
.
(** Invariants API *)
Definition
inv_def
(
N
:
namespace
)
(
P
:
iProp
Σ
)
:
iProp
Σ
:=
(
□
(
∀
E
,
⌜↑
N
⊆
E
⌝
→
|
=
{
E
,
E
∖
↑
N
}=>
▷
P
∗
(
▷
P
=
{
E
∖
↑
N
,
E
}
=∗
True
)))
%
I
.
Definition
inv_aux
:
seal
(
@
inv_def
)
.
by
eexists
.
Qed
.
Definition
inv
:=
inv_aux
.(
unseal
)
.
Definition
inv_eq
:
@
inv
=
@
inv_def
:=
inv_aux
.(
seal_eq
)
.
Typeclasses
Opaque
inv
.
Lemma
own_inv_to_inv
M
P
:
own_inv
M
P
-∗
inv
M
P
.
Proof
.
iIntros
"#I"
.
rewrite
inv_eq
.
iIntros
(
E
H
)
.
iPoseProof
(
own_inv_open
with
"I"
)
as
"H"
;
eauto
.
Qed
.
(**
Properties about
invariants *)
Global
Instance
inv_contractive
N
:
Contractive
(
inv
N
)
.
(**
** Public API of
invariants *)
Global
Instance
inv_contractive
N
:
Contractive
(
inv
N
)
.
Proof
.
rewrite
inv_eq
.
solve_contractive
.
Qed
.
Global
Instance
inv_ne
N
:
NonExpansive
(
inv
N
)
.
Proof
.
apply
contractive_ne
,
_
.
Qed
.
Global
Instance
inv_proper
N
:
Proper
(
equiv
==>
equiv
)
(
inv
N
)
.
Global
Instance
inv_proper
N
:
Proper
(
equiv
==>
equiv
)
(
inv
N
)
.
Proof
.
apply
ne_proper
,
_
.
Qed
.
Global
Instance
inv_persistent
M
P
:
Persistent
(
inv
M
P
)
.
Proof
.
rewrite
inv_eq
.
typeclasses
eauto
.
Qed
.
Global
Instance
inv_persistent
N
P
:
Persistent
(
inv
N
P
)
.
Proof
.
rewrite
inv_eq
.
apply
_
.
Qed
.
Lemma
inv_acc
N
P
Q
:
inv
N
P
-∗
▷
□
(
P
-∗
Q
∗
(
Q
-∗
P
))
-∗
inv
N
Q
.
Proof
.
iIntros
"#I #Acc"
.
rewrite
inv_eq
.
iModIntro
.
iIntros
(
E
H
)
.
iDestruct
(
"I"
$!
E
H
)
as
"#I'"
.
iApply
fupd_wand_r
.
iFrame
"I'"
.
iIntros
"(P & Hclose)"
.
iSpecialize
(
"Acc"
with
"P"
)
.
iDestruct
"Acc"
as
"[Q CB]"
.
iFrame
.
iIntros
"Q"
.
iApply
"Hclose"
.
now
iApply
"CB"
.
rewrite
inv_eq
.
iIntros
"#HI #Acc !>"
(
E
H
)
.
iMod
(
"HI"
$!
E
H
)
as
"[HP Hclose]"
.
iDestruct
(
"Acc"
with
"HP"
)
as
"[$ HQP]"
.
iIntros
"!> HQ"
.
iApply
"Hclose"
.
iApply
"HQP"
.
done
.
Qed
.
Lemma
inv_iff
N
P
Q
:
▷
□
(
P
↔
Q
)
-∗
inv
N
P
-∗
inv
N
Q
.
Proof
.
iIntros
"#HPQ #I"
.
iApply
(
inv_acc
with
"I"
)
.
iNext
.
iIntros
"!# P"
.
iSplitL
"P"
.
iIntros
"#HPQ #
H
I"
.
iApply
(
inv_acc
with
"
H
I"
)
.
iIntros
"
!>
!#
H
P"
.
iSplitL
"
H
P"
.
-
by
iApply
"HPQ"
.
-
iIntros
"Q"
.
by
iApply
"HPQ"
.
Qed
.
Lemma
inv_to_inv
M
P
:
internal_inv
M
P
-∗
inv
M
P
.
Proof
.
iIntros
"#I"
.
rewrite
inv_eq
.
iIntros
(
E
H
)
.
iPoseProof
(
internal_inv_open
with
"I"
)
as
"H"
;
eauto
.
-
iIntros
"HQ"
.
by
iApply
"HPQ"
.
Qed
.
Lemma
inv_alloc
N
E
P
:
▷
P
=
{
E
}
=∗
inv
N
P
.
Proof
.
iIntros
"P"
.
iPoseProof
(
internal_inv_alloc
N
E
with
"P"
)
as
"I"
.
iApply
fupd_mono
;
last
eauto
.
iApply
inv_to_inv
.
iIntros
"HP"
.
iApply
own_inv_to_inv
.
iApply
(
own_inv_alloc
N
E
with
"HP"
)
.
Qed
.
Lemma
inv_alloc_open
N
E
P
:
↑
N
⊆
E
→
(|
=
{
E
,
E
∖↑
N
}=>
inv
N
P
∗
(
▷
P
=
{
E
∖↑
N
,
E
}
=∗
True
))
%
I
.
Proof
.
iIntros
(
H
)
.
iPoseProof
(
internal_inv_alloc_open
_
_
_
H
)
as
"H"
.
iApply
fupd_mono
;
last
eauto
.
iIntros
"[I H]"
;
iFrame
;
by
iApply
inv_to_inv
.
iIntros
(?)
.
iMod
own_inv_alloc_open
as
"[HI $]"
;
first
done
.
iApply
own_inv_to_inv
.
done
.
Qed
.
Lemma
inv_open
E
N
P
:
↑
N
⊆
E
→
inv
N
P
=
{
E
,
E
∖↑
N
}
=∗
▷
P
∗
(
▷
P
=
{
E
∖↑
N
,
E
}
=∗
True
)
.
Proof
.
rewrite
inv_eq
/
inv_def
;
iIntros
(
H
)
"#I"
.
by
iApply
"I"
.
Qed
.
Lemma
inv_open_strong
E
N
P
:
↑
N
⊆
E
→
inv
N
P
=
{
E
,
E
∖↑
N
}
=∗
▷
P
∗
∀
E'
,
▷
P
=
{
E'
,
↑
N
∪
E'
}
=∗
True
.
Proof
.
iIntros
(?)
"Hinv"
.
iPoseProof
(
inv_open
(
↑
N
)
N
P
with
"Hinv"
)
as
"H"
;
first
done
.
rewrite
difference_diag_L
.
iPoseProof
(
fupd_mask_frame_r
_
_
(
E
∖
↑
N
)
with
"H"
)
as
"H"
;
first
set_solver
.
rewrite
left_id_L
-
union_difference_L
//.
iMod
"H"
as
"[$ H]"
;
iModIntro
.
iIntros
(
E'
)
"HP"
.
iPoseProof
(
fupd_mask_frame_r
_
_
E'
with
"(H HP)"
)
as
"H"
;
first
set_solver
.
by
rewrite
left_id_L
.
rewrite
inv_eq
/
inv_def
;
iIntros
(?)
"#HI"
.
by
iApply
"HI"
.
Qed
.
(** ** Proof mode integration *)
Global
Instance
into_inv_inv
N
P
:
IntoInv
(
inv
N
P
)
N
:=
{}
.
Global
Instance
into_acc_inv
N
P
E
:
...
...
@@ -165,6 +147,20 @@ Section inv.
iIntros
(?)
"#Hinv _"
.
iApply
"Hinv"
;
done
.
Qed
.
(** ** Derived properties *)
Lemma
inv_open_strong
E
N
P
:
↑
N
⊆
E
→
inv
N
P
=
{
E
,
E
∖↑
N
}
=∗
▷
P
∗
∀
E'
,
▷
P
=
{
E'
,
↑
N
∪
E'
}
=∗
True
.
Proof
.
iIntros
(?)
"Hinv"
.
iPoseProof
(
inv_open
(
↑
N
)
N
P
with
"Hinv"
)
as
"H"
;
first
done
.
rewrite
difference_diag_L
.
iPoseProof
(
fupd_mask_frame_r
_
_
(
E
∖
↑
N
)
with
"H"
)
as
"H"
;
first
set_solver
.
rewrite
left_id_L
-
union_difference_L
//.
iMod
"H"
as
"[$ H]"
;
iModIntro
.
iIntros
(
E'
)
"HP"
.
iPoseProof
(
fupd_mask_frame_r
_
_
E'
with
"(H HP)"
)
as
"H"
;
first
set_solver
.
by
rewrite
left_id_L
.
Qed
.
Lemma
inv_open_timeless
E
N
P
`{
!
Timeless
P
}
:
↑
N
⊆
E
→
inv
N
P
=
{
E
,
E
∖↑
N
}
=∗
P
∗
(
P
=
{
E
∖↑
N
,
E
}
=∗
True
)
.
Proof
.
...
...
@@ -172,23 +168,22 @@ Section inv.
iIntros
"!> {$HP} HP"
.
iApply
"Hclose"
;
auto
.
Qed
.
(* Weakening of semantic invariants *)
Lemma
inv_proj_l
N
P
Q
:
inv
N
(
P
∗
Q
)
-∗
inv
N
P
.
Lemma
inv_sep_l
N
P
Q
:
inv
N
(
P
∗
Q
)
-∗
inv
N
P
.
Proof
.
iIntros
"#I"
.
iApply
inv_acc
;
eauto
.
iNext
.
iIntros
"!# [$
Q
]
P"
;
iFrame
.
iIntros
"#
H
I"
.
iApply
inv_acc
;
eauto
.
iIntros
"
!>
!# [$
$
]
$"
.
Qed
.
Lemma
inv_
proj
_r
N
P
Q
:
inv
N
(
P
∗
Q
)
-∗
inv
N
Q
.
Lemma
inv_
sep
_r
N
P
Q
:
inv
N
(
P
∗
Q
)
-∗
inv
N
Q
.
Proof
.
rewrite
(
bi
.
sep_
comm
P
Q
)
.
eapply
inv_
proj
_l
.
rewrite
(
comm
_
P
Q
)
.
eapply
inv_
sep
_l
.
Qed
.
Lemma
inv_sp
lit
N
P
Q
:
inv
N
(
P
∗
Q
)
-∗
inv
N
P
∗
inv
N
Q
.
Lemma
inv_s
e
p
N
P
Q
:
inv
N
(
P
∗
Q
)
-∗
inv
N
P
∗
inv
N
Q
.
Proof
.
iIntros
"#H"
.
iPoseProof
(
inv_
proj
_l
with
"H"
)
as
"$"
.
iPoseProof
(
inv_
proj
_r
with
"H"
)
as
"$"
.
iPoseProof
(
inv_
sep
_l
with
"H"
)
as
"$"
.
iPoseProof
(
inv_
sep
_r
with
"H"
)
as
"$"
.
Qed
.
End
inv
.
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment