Skip to content
Snippets Groups Projects
Commit aa5a89e0 authored by Robbert Krebbers's avatar Robbert Krebbers
Browse files

Show that `|==>` commutes with big ops (in one way).

parent 0c4e2984
No related branches found
No related tags found
No related merge requests found
...@@ -163,6 +163,23 @@ Section bupd_derived. ...@@ -163,6 +163,23 @@ Section bupd_derived.
Proof. by rewrite bupd_frame_r wand_elim_r. Qed. Proof. by rewrite bupd_frame_r wand_elim_r. Qed.
Lemma bupd_sep P Q : (|==> P) (|==> Q) ==∗ P Q. Lemma bupd_sep P Q : (|==> P) (|==> Q) ==∗ P Q.
Proof. by rewrite bupd_frame_r bupd_frame_l bupd_trans. Qed. Proof. by rewrite bupd_frame_r bupd_frame_l bupd_trans. Qed.
Global Instance bupd_homomorphism :
MonoidHomomorphism bi_sep bi_sep (flip ()) (bupd (PROP:=PROP)).
Proof. split; [split|]; try apply _. apply bupd_sep. apply bupd_intro. Qed.
Lemma big_sepL_bupd {A} (Φ : nat A PROP) l :
([ list] kx l, |==> Φ k x) |==> [ list] kx l, Φ k x.
Proof. by rewrite (big_opL_commute _). Qed.
Lemma big_sepM_bupd {A} `{Countable K} (Φ : K A PROP) l :
([ map] kx l, |==> Φ k x) |==> [ map] kx l, Φ k x.
Proof. by rewrite (big_opM_commute _). Qed.
Lemma big_sepS_bupd `{Countable A} (Φ : A PROP) l :
([ set] x l, |==> Φ x) |==> [ set] x l, Φ x.
Proof. by rewrite (big_opS_commute _). Qed.
Lemma big_sepMS_bupd `{Countable A} (Φ : A PROP) l :
([ mset] x l, |==> Φ x) |==> [ mset] x l, Φ x.
Proof. by rewrite (big_opMS_commute _). Qed.
End bupd_derived. End bupd_derived.
Section bupd_derived_sbi. Section bupd_derived_sbi.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment