Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Terraform modules
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Pierre Roux
Iris
Commits
70ec4cba
Commit
70ec4cba
authored
4 years ago
by
Ralf Jung
Browse files
Options
Downloads
Patches
Plain Diff
add big_sepM_filter
parent
79f2f36f
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
iris/bi/big_op.v
+21
-0
21 additions, 0 deletions
iris/bi/big_op.v
with
21 additions
and
0 deletions
iris/bi/big_op.v
+
21
−
0
View file @
70ec4cba
...
...
@@ -1137,6 +1137,27 @@ Section map.
([
∗
map
]
k
↦
y
∈
<
[
i
:=
x
]
>
m
,
<
[
i
:=
P
]
>
Φ
k
)
⊣⊢
(
P
∗
[
∗
map
]
k
↦
y
∈
m
,
Φ
k
)
.
Proof
.
apply
big_opM_fn_insert'
.
Qed
.
Lemma
big_sepM_filter'
Φ
(
P
:
K
*
A
→
Prop
)
`{
∀
k
,
Decision
(
P
k
)}
m
:
([
∗
map
]
k
↦
x
∈
filter
P
m
,
Φ
k
x
)
⊣⊢
([
∗
map
]
k
↦
x
∈
m
,
if
decide
(
P
(
k
,
x
))
then
Φ
k
x
else
emp
)
.
Proof
.
induction
m
as
[|
k
v
m
?
IH
]
using
map_ind
.
{
by
rewrite
map_filter_empty
!
big_sepM_empty
.
}
destruct
(
decide
(
P
(
k
,
v
)))
.
-
rewrite
map_filter_insert
//.
rewrite
!
big_sepM_insert
//.
*
by
rewrite
decide_True
//
IH
.
*
apply
map_filter_lookup_None
;
eauto
.
-
rewrite
map_filter_insert_not'
//
;
last
by
congruence
.
rewrite
!
big_sepM_insert
//
decide_False
//
IH
.
rewrite
left_id
.
eauto
.
Qed
.
Lemma
big_sepM_filter
`{
BiAffine
PROP
}
Φ
(
P
:
K
*
A
→
Prop
)
`{
∀
k
,
Decision
(
P
k
)}
m
:
([
∗
map
]
k
↦
x
∈
filter
P
m
,
Φ
k
x
)
⊣⊢
([
∗
map
]
k
↦
x
∈
m
,
⌜
P
(
k
,
x
)
⌝
→
Φ
k
x
)
.
Proof
.
setoid_rewrite
<-
decide_emp
.
apply
big_sepM_filter'
.
Qed
.
Lemma
big_sepM_union
Φ
m1
m2
:
m1
##
ₘ
m2
→
([
∗
map
]
k
↦
y
∈
m1
∪
m2
,
Φ
k
y
)
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment