Skip to content
Snippets Groups Projects
Commit 70ec4cba authored by Ralf Jung's avatar Ralf Jung
Browse files

add big_sepM_filter

parent 79f2f36f
No related branches found
No related tags found
No related merge requests found
......@@ -1137,6 +1137,27 @@ Section map.
([ map] ky <[i:=x]> m, <[i:=P]> Φ k) ⊣⊢ (P [ map] ky m, Φ k).
Proof. apply big_opM_fn_insert'. Qed.
Lemma big_sepM_filter' Φ (P : K * A Prop) `{ k, Decision (P k)} m :
([ map] k x filter P m, Φ k x) ⊣⊢
([ map] k x m, if decide (P (k, x)) then Φ k x else emp).
Proof.
induction m as [|k v m ? IH] using map_ind.
{ by rewrite map_filter_empty !big_sepM_empty. }
destruct (decide (P (k, v))).
- rewrite map_filter_insert //.
rewrite !big_sepM_insert //.
* by rewrite decide_True // IH.
* apply map_filter_lookup_None; eauto.
- rewrite map_filter_insert_not' //; last by congruence.
rewrite !big_sepM_insert // decide_False // IH. rewrite left_id. eauto.
Qed.
Lemma big_sepM_filter `{BiAffine PROP}
Φ (P : K * A Prop) `{ k, Decision (P k)} m :
([ map] k x filter P m, Φ k x) ⊣⊢
([ map] k x m, P (k, x) Φ k x).
Proof. setoid_rewrite <-decide_emp. apply big_sepM_filter'. Qed.
Lemma big_sepM_union Φ m1 m2 :
m1 ## m2
([ map] ky m1 m2, Φ k y)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment