Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Terraform modules
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Pierre Roux
Iris
Commits
6ada4936
Commit
6ada4936
authored
5 years ago
by
Gregory Malecha
Browse files
Options
Downloads
Patches
Plain Diff
Fix `forall` parsing. using the stdpp change
parent
d80e7abf
No related branches found
No related tags found
No related merge requests found
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
tests/proofmode_ascii.ref
+71
-0
71 additions, 0 deletions
tests/proofmode_ascii.ref
tests/proofmode_ascii.v
+60
-0
60 additions, 0 deletions
tests/proofmode_ascii.v
theories/bi/ascii.v
+61
-29
61 additions, 29 deletions
theories/bi/ascii.v
with
192 additions
and
29 deletions
tests/proofmode_ascii.ref
+
71
−
0
View file @
6ada4936
...
...
@@ -148,3 +148,74 @@ Tactic failure: iInv: invariant "H2" not found.
--------------------------------------∗
|={E ∖ ↑N,E}=> emp
"p1"
: string
1 subgoal
PROP : bi
============================
forall (P : PROP) (_ : True), bi_entails P P
"p2"
: string
1 subgoal
PROP : bi
============================
forall P : PROP, and True (bi_entails P P)
"p3"
: string
1 subgoal
PROP : bi
============================
ex (fun P : PROP => bi_entails P P)
"p4"
: string
1 subgoal
PROP : bi
============================
bi_emp_valid (bi_exist (fun x : nat => bi_pure (eq x O)))
"p5"
: string
1 subgoal
PROP : bi
============================
bi_emp_valid (bi_exist (fun _ : nat => bi_pure (forall y : nat, eq y y)))
"p6"
: string
1 subgoal
PROP : bi
============================
ex
(unique
(fun z : nat =>
bi_emp_valid
(bi_exist
(fun _ : nat =>
bi_sep (bi_pure (forall y : nat, eq y y)) (bi_pure (eq z O))))))
"p7"
: string
1 subgoal
PROP : bi
============================
forall (a : nat) (_ : eq a O) (y : nat),
bi_entails (bi_pure True) (bi_pure (ge y O))
"p8"
: string
1 subgoal
PROP : bi
============================
forall (a : nat) (_ : eq a O) (y : nat), bi_emp_valid (bi_pure (ge y O))
"p9"
: string
1 subgoal
PROP : bi
============================
forall (a : nat) (_ : eq a O) (_ : nat),
bi_emp_valid (bi_forall (fun z : nat => bi_pure (ge z O)))
This diff is collapsed.
Click to expand it.
tests/proofmode_ascii.v
+
60
−
0
View file @
6ada4936
...
...
@@ -4,6 +4,8 @@ From iris.base_logic.lib Require Import invariants cancelable_invariants na_inva
From
iris
.
bi
Require
Import
ascii
.
Set
Default
Proof
Using
"Type"
.
Section
base_logic_tests
.
Context
{
M
:
ucmraT
}
.
Implicit
Types
P
Q
R
:
uPred
M
.
...
...
@@ -294,4 +296,62 @@ Lemma test_entails_annot_sections_space_close P :
(
P
|
--@
{
PROP
}
P
)
/\
(|
--@
{
PROP
}
)
P
P
/\
(
P
-|-@
{
PROP
}
P
)
/\
(
-|-@
{
PROP
}
)
P
P
.
Proof
.
naive_solver
.
Qed
.
Check
"p1"
.
Lemma
p1
:
forall
P
,
True
->
P
|
--
P
.
Proof
.
Unset
Printing
Notations
.
Show
.
Set
Printing
Notations
.
Abort
.
Check
"p2"
.
Lemma
p2
:
forall
P
,
True
/\
(
P
|
--
P
)
.
Proof
.
Unset
Printing
Notations
.
Show
.
Set
Printing
Notations
.
Abort
.
Check
"p3"
.
Lemma
p3
:
exists
P
,
P
|
--
P
.
Proof
.
Unset
Printing
Notations
.
Show
.
Set
Printing
Notations
.
Abort
.
Check
"p4"
.
Lemma
p4
:
|
--@
{
PROP
}
exists
(
x
:
nat
),
⌜
x
=
0
⌝.
Proof
.
Unset
Printing
Notations
.
Show
.
Set
Printing
Notations
.
Abort
.
Check
"p5"
.
Lemma
p5
:
|
--@
{
PROP
}
exists
(
x
:
nat
),
⌜
forall
y
:
nat
,
y
=
y
⌝.
Proof
.
Unset
Printing
Notations
.
Show
.
Set
Printing
Notations
.
Abort
.
Check
"p6"
.
Lemma
p6
:
exists
!
(
z
:
nat
),
|
--@
{
PROP
}
exists
(
x
:
nat
),
⌜
forall
y
:
nat
,
y
=
y
⌝
**
⌜
z
=
0
⌝.
Proof
.
Unset
Printing
Notations
.
Show
.
Set
Printing
Notations
.
Abort
.
Check
"p7"
.
Lemma
p7
:
forall
(
a
:
nat
),
a
=
0
->
forall
y
,
True
|
--@
{
PROP
}
⌜
y
>=
0
⌝.
Proof
.
Unset
Printing
Notations
.
Show
.
Set
Printing
Notations
.
Abort
.
Check
"p8"
.
Lemma
p8
:
forall
(
a
:
nat
),
a
=
0
->
forall
y
,
|
--@
{
PROP
}
⌜
y
>=
0
⌝.
Proof
.
Unset
Printing
Notations
.
Show
.
Set
Printing
Notations
.
Abort
.
Check
"p9"
.
Lemma
p9
:
forall
(
a
:
nat
),
a
=
0
->
forall
y
:
nat
,
|
--@
{
PROP
}
forall
z
:
nat
,
⌜
z
>=
0
⌝.
Proof
.
Unset
Printing
Notations
.
Show
.
Set
Printing
Notations
.
Abort
.
Set
Printing
Notations
.
End
parsing_tests
.
This diff is collapsed.
Click to expand it.
theories/bi/ascii.v
+
61
−
29
View file @
6ada4936
...
...
@@ -6,7 +6,9 @@ From iris.algebra Require Export ofe.
*)
Notation
"P |-- Q"
:=
(
P
⊢
Q
)
(
at
level
99
,
Q
at
level
200
,
right
associativity
,
only
parsing
)
:
stdpp_scope
.
Notation
"P '|--@{' PROP } Q"
:=
(
P
⊢@
{
PROP
}
Q
)
(
at
level
99
,
Q
at
level
200
,
right
associativity
,
only
parsing
)
:
stdpp_scope
.
Notation
"P '|--@{' PROP } Q"
:=
(
P
⊢@
{
PROP
}
Q
)
(
at
level
99
,
Q
at
level
200
,
right
associativity
,
only
parsing
)
:
stdpp_scope
.
Notation
"(|--)"
:=
(
⊢
)
(
only
parsing
)
:
stdpp_scope
.
Notation
"'(|--@{' PROP } )"
:=
(
⊢@
{
PROP
})
(
only
parsing
)
:
stdpp_scope
.
...
...
@@ -16,11 +18,14 @@ Notation "'|--@{' PROP } Q" := (⊢@{PROP} Q) (at level 20, Q at level 200, only
Notation
"'(|--@{' PROP } Q )"
:=
(
⊢@
{
PROP
}
Q
)
(
only
parsing
)
:
stdpp_scope
.
Notation
"P -|- Q"
:=
(
P
⊣⊢
Q
)
(
at
level
95
,
no
associativity
,
only
parsing
)
:
stdpp_scope
.
Notation
"P '-|-@{' PROP } Q"
:=
(
P
⊣⊢@
{
PROP
}
Q
)
(
at
level
95
,
no
associativity
,
only
parsing
)
:
stdpp_scope
.
Notation
"P '-|-@{' PROP } Q"
:=
(
P
⊣⊢@
{
PROP
}
Q
)
(
at
level
95
,
no
associativity
,
only
parsing
)
:
stdpp_scope
.
Notation
"(-|-)"
:=
(
⊣⊢
)
(
only
parsing
)
:
stdpp_scope
.
Notation
"'(-|-@{' PROP } )"
:=
(
⊣⊢@
{
PROP
})
(
only
parsing
)
:
stdpp_scope
.
Notation
"P -* Q"
:=
(
P
⊢
Q
)
%
stdpp
(
at
level
99
,
Q
at
level
200
,
right
associativity
,
only
parsing
)
:
stdpp_scope
.
Notation
"P -* Q"
:=
(
P
⊢
Q
)
%
stdpp
(
at
level
99
,
Q
at
level
200
,
right
associativity
,
only
parsing
)
:
stdpp_scope
.
(* FIXME: Notation "'⌜' φ '⌝'" := (bi_pure φ%type%stdpp) : bi_scope. *)
Notation
"P /\ Q"
:=
(
P
∧
Q
)
%
I
(
only
parsing
)
:
bi_scope
.
...
...
@@ -28,56 +33,83 @@ Notation "(/\)" := bi_and (only parsing) : bi_scope.
Notation
"P \/ Q"
:=
(
P
∨
Q
)
%
I
(
only
parsing
)
:
bi_scope
.
Notation
"(\/)"
:=
bi_or
(
only
parsing
)
:
bi_scope
.
Notation
"P -> Q"
:=
(
P
→
Q
)
%
I
(
only
parsing
)
:
bi_scope
.
Notation
"P ** Q"
:=
(
P
∗
Q
)
%
I
(
at
level
80
,
right
associativity
,
only
parsing
)
:
bi_scope
.
Notation
"P ** Q"
:=
(
P
∗
Q
)
%
I
(
at
level
80
,
right
associativity
,
only
parsing
)
:
bi_scope
.
Notation
"(**)"
:=
bi_sep
(
only
parsing
)
:
bi_scope
.
Notation
"P -* Q"
:=
(
P
-∗
Q
)
%
I
(
at
level
99
,
Q
at
level
200
,
right
associativity
,
only
parsing
)
:
bi_scope
.
(* ∀ x .. y , P *)
Notation
"'forall' x .. y , P"
:=
(
bi_forall
(
λ
x
,
.
.
(
bi_forall
(
λ
y
,
P
))
..)
%
I
)
(
at
level
200
,
x
binder
,
right
associativity
,
only
parsing
)
:
bi_scope
.
(
bi_forall
(
fun
x
=>
.
.
(
bi_forall
(
fun
y
=>
P
%
I
))
..))
(
at
level
200
,
x
binder
,
right
associativity
,
only
parsing
)
:
bi_scope
.
(* ∃ x .. y , P *)
Notation
"'exists' x .. y , P"
:=
(
bi_exist
(
λ
x
,
.
.
(
bi_exist
(
λ
y
,
P
))
..)
%
I
)
(
at
level
200
,
x
binder
,
right
associativity
,
only
parsing
)
:
bi_scope
.
(
bi_exist
(
fun
x
=>
.
.
(
bi_exist
(
fun
y
=>
P
%
I
))
..))
(
at
level
200
,
x
binder
,
right
associativity
,
only
parsing
)
:
bi_scope
.
Notation
"|> P"
:=
(
▷
P
)
%
I
(
at
level
20
,
right
associativity
,
only
parsing
)
:
bi_scope
.
Notation
"|> P"
:=
(
▷
P
)
%
I
(
at
level
20
,
right
associativity
,
only
parsing
)
:
bi_scope
.
Notation
"|>? p P"
:=
(
▷
?p
P
)
%
I
(
at
level
20
,
p
at
level
9
,
P
at
level
20
,
only
parsing
)
:
bi_scope
.
Notation
"|>^ n P"
:=
(
▷^
n
P
)
%
I
(
at
level
20
,
n
at
level
9
,
P
at
level
20
,
only
parsing
)
:
bi_scope
.
Notation
"P <-> Q"
:=
(
P
↔
Q
)
%
I
(
at
level
95
,
no
associativity
,
only
parsing
)
:
bi_scope
.
Notation
"P <-> Q"
:=
(
P
↔
Q
)
%
I
(
at
level
95
,
no
associativity
,
only
parsing
)
:
bi_scope
.
Notation
"P *-* Q"
:=
(
P
∗-∗
Q
)
%
I
(
at
level
95
,
no
associativity
,
only
parsing
)
:
bi_scope
.
Notation
"P *-* Q"
:=
(
P
∗-∗
Q
)
%
I
(
at
level
95
,
no
associativity
,
only
parsing
)
:
bi_scope
.
Notation
"'<#>' P"
:=
(
□
P
)
%
I
(
at
level
20
,
right
associativity
,
only
parsing
)
:
bi_scope
.
Notation
"'<#>' P"
:=
(
□
P
)
%
I
(
at
level
20
,
right
associativity
,
only
parsing
)
:
bi_scope
.
Notation
"'<#>?' p P"
:=
(
□
?p
P
)
%
I
(
at
level
20
,
p
at
level
9
,
P
at
level
20
,
right
associativity
,
only
parsing
)
:
bi_scope
.
Notation
"'<except_0>' P"
:=
(
◇
P
)
%
I
(
at
level
20
,
right
associativity
,
only
parsing
)
:
bi_scope
.
Notation
"'<except_0>' P"
:=
(
◇
P
)
%
I
(
at
level
20
,
right
associativity
,
only
parsing
)
:
bi_scope
.
Notation
"mP -*? Q"
:=
(
mP
-∗
?
Q
)
%
I
(
at
level
99
,
Q
at
level
200
,
right
associativity
,
only
parsing
)
:
bi_scope
.
Notation
"P ==* Q"
:=
(
P
==∗
Q
)
%
stdpp
(
at
level
99
,
Q
at
level
200
,
only
parsing
)
:
stdpp_scope
.
Notation
"P ==* Q"
:=
(
P
==∗
Q
)
%
I
(
at
level
99
,
Q
at
level
200
,
only
parsing
)
:
bi_scope
.
Notation
"P ==* Q"
:=
(
P
==∗
Q
)
%
stdpp
(
at
level
99
,
Q
at
level
200
,
only
parsing
)
:
stdpp_scope
.
Notation
"P ==* Q"
:=
(
P
==∗
Q
)
%
I
(
at
level
99
,
Q
at
level
200
,
only
parsing
)
:
bi_scope
.
Notation
"P ={ E1 , E2 }=* Q"
:=
(
P
=
{
E1
,
E2
}
=∗
Q
)
%
I
(
at
level
99
,
E1
,
E2
at
level
50
,
Q
at
level
200
,
only
parsing
)
:
bi_scope
.
Notation
"P ={ E1 , E2 }=* Q"
:=
(
P
=
{
E1
,
E2
}
=∗
Q
)
(
at
level
99
,
E1
,
E2
at
level
50
,
Q
at
level
200
,
only
parsing
)
:
stdpp_scope
.
Notation
"P ={ E1 , E2 }=* Q"
:=
(
P
=
{
E1
,
E2
}
=∗
Q
)
%
I
(
at
level
99
,
E1
,
E2
at
level
50
,
Q
at
level
200
,
only
parsing
)
:
bi_scope
.
Notation
"P ={ E1 , E2 }=* Q"
:=
(
P
=
{
E1
,
E2
}
=∗
Q
)
(
at
level
99
,
E1
,
E2
at
level
50
,
Q
at
level
200
,
only
parsing
)
:
stdpp_scope
.
Notation
"P ={ E }=* Q"
:=
(
P
=
{
E
}
=∗
Q
)
%
I
(
at
level
99
,
E
at
level
50
,
Q
at
level
200
,
only
parsing
)
:
bi_scope
.
Notation
"P ={ E }=* Q"
:=
(
P
=
{
E
}
=∗
Q
)
(
at
level
99
,
E
at
level
50
,
Q
at
level
200
,
only
parsing
)
:
stdpp_scope
Notation
"P ={ E }=* Q"
:=
(
P
=
{
E
}
=∗
Q
)
%
I
(
at
level
99
,
E
at
level
50
,
Q
at
level
200
,
only
parsing
)
:
bi_scope
.
Notation
"P ={ E }=* Q"
:=
(
P
=
{
E
}
=∗
Q
)
(
at
level
99
,
E
at
level
50
,
Q
at
level
200
,
only
parsing
)
:
stdpp_scope
.
Notation
"|={ E1 , E2 , E3 }|>=> Q"
:=
(|
=
{
E1
,
E2
,
E3
}
▷=>
Q
)
%
I
(
at
level
99
,
E1
,
E2
at
level
50
,
Q
at
level
200
,
only
parsing
)
:
bi_scope
.
Notation
"P ={ E1 , E2 , E3 }|>=* Q"
:=
(
P
=
{
E1
,
E2
,
E3
}
▷=∗
Q
)
%
I
(
at
level
99
,
E1
,
E2
at
level
50
,
Q
at
level
200
,
only
parsing
)
:
bi_scope
.
Notation
"|={ E1 , E2 }|>=> Q"
:=
(|
=
{
E1
,
E2
}
▷=>
Q
)
%
I
(
at
level
99
,
E1
,
E2
at
level
50
,
Q
at
level
200
,
only
parsing
)
:
bi_scope
.
Notation
"P ={ E1 , E2 }|>=* Q"
:=
(
P
=
{
E1
,
E2
}
▷=∗
Q
)
(
at
level
99
,
E1
,
E2
at
level
50
,
Q
at
level
200
,
only
parsing
)
:
stdpp_scope
.
Notation
"P ={ E1 , E2 }|>=* Q"
:=
(
P
=
{
E1
,
E2
}
▷=∗
Q
)
%
I
(
at
level
99
,
E1
,
E2
at
level
50
,
Q
at
level
200
,
only
parsing
)
:
bi_scope
.
Notation
"|={ E }|>=> Q"
:=
(|
=
{
E
}
▷=>
Q
)
%
I
(
at
level
99
,
E
at
level
50
,
Q
at
level
200
,
only
parsing
)
:
bi_scope
.
Notation
"P ={ E }|>=* Q"
:=
(
P
=
{
E
}
▷=∗
Q
)
%
I
(
at
level
99
,
E
at
level
50
,
Q
at
level
200
,
only
parsing
)
:
bi_scope
.
Notation
"|={ E1 , E2 }|>=>^ n Q"
:=
(|
=
{
E1
,
E2
}
▷=>^
n
Q
)
%
I
(
at
level
99
,
E1
,
E2
at
level
50
,
n
at
level
9
,
Q
at
level
200
,
only
parsing
)
:
bi_scope
.
Notation
"P ={ E1 , E2 }|>=*^ n Q"
:=
(
P
=
{
E1
,
E2
}
▷=∗^
n
Q
)
%
I
(
at
level
99
,
E1
,
E2
at
level
50
,
n
at
level
9
,
Q
at
level
200
,
only
parsing
)
:
stdpp_scope
.
Notation
"P ={ E1 , E2 }|>=*^ n Q"
:=
(
P
=
{
E1
,
E2
}
▷=∗^
n
Q
)
%
I
(
at
level
99
,
E1
,
E2
at
level
50
,
n
at
level
9
,
Q
at
level
200
,
only
parsing
)
:
bi_scope
.
Notation
"|={ E1 , E2 , E3 }|>=> Q"
:=
(|
=
{
E1
,
E2
,
E3
}
▷=>
Q
)
%
I
(
at
level
99
,
E1
,
E2
at
level
50
,
Q
at
level
200
,
only
parsing
)
:
bi_scope
.
Notation
"P ={ E1 , E2 , E3 }|>=* Q"
:=
(
P
=
{
E1
,
E2
,
E3
}
▷=∗
Q
)
%
I
(
at
level
99
,
E1
,
E2
at
level
50
,
Q
at
level
200
,
only
parsing
)
:
bi_scope
.
Notation
"|={ E1 , E2 }|>=> Q"
:=
(|
=
{
E1
,
E2
}
▷=>
Q
)
%
I
(
at
level
99
,
E1
,
E2
at
level
50
,
Q
at
level
200
,
only
parsing
)
:
bi_scope
.
Notation
"P ={ E1 , E2 }|>=* Q"
:=
(
P
=
{
E1
,
E2
}
▷=∗
Q
)
(
at
level
99
,
E1
,
E2
at
level
50
,
Q
at
level
200
,
only
parsing
)
:
stdpp_scope
.
Notation
"P ={ E1 , E2 }|>=* Q"
:=
(
P
=
{
E1
,
E2
}
▷=∗
Q
)
%
I
(
at
level
99
,
E1
,
E2
at
level
50
,
Q
at
level
200
,
only
parsing
)
:
bi_scope
.
Notation
"|={ E }|>=> Q"
:=
(|
=
{
E
}
▷=>
Q
)
%
I
(
at
level
99
,
E
at
level
50
,
Q
at
level
200
,
only
parsing
)
:
bi_scope
.
Notation
"P ={ E }|>=* Q"
:=
(
P
=
{
E
}
▷=∗
Q
)
%
I
(
at
level
99
,
E
at
level
50
,
Q
at
level
200
,
only
parsing
)
:
bi_scope
.
Notation
"|={ E1 , E2 }|>=>^ n Q"
:=
(|
=
{
E1
,
E2
}
▷=>^
n
Q
)
%
I
(
at
level
99
,
E1
,
E2
at
level
50
,
n
at
level
9
,
Q
at
level
200
,
only
parsing
)
:
bi_scope
.
Notation
"P ={ E1 , E2 }|>=*^ n Q"
:=
(
P
=
{
E1
,
E2
}
▷=∗^
n
Q
)
%
I
(
at
level
99
,
E1
,
E2
at
level
50
,
n
at
level
9
,
Q
at
level
200
,
only
parsing
)
:
stdpp_scope
.
Notation
"P ={ E1 , E2 }|>=*^ n Q"
:=
(
P
=
{
E1
,
E2
}
▷=∗^
n
Q
)
%
I
(
at
level
99
,
E1
,
E2
at
level
50
,
n
at
level
9
,
Q
at
level
200
,
only
parsing
)
:
bi_scope
.
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment