Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Terraform modules
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Pierre Roux
Iris
Commits
52f90871
Commit
52f90871
authored
7 years ago
by
Ralf Jung
Browse files
Options
Downloads
Patches
Plain Diff
remove unnecessary side-conditions from ownP lemmas
parent
bb37a795
No related branches found
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
theories/program_logic/lifting.v
+10
-10
10 additions, 10 deletions
theories/program_logic/lifting.v
theories/program_logic/ownp.v
+40
-47
40 additions, 47 deletions
theories/program_logic/ownp.v
with
50 additions
and
57 deletions
theories/program_logic/lifting.v
+
10
−
10
View file @
52f90871
...
@@ -36,17 +36,19 @@ Qed.
...
@@ -36,17 +36,19 @@ Qed.
(** Derived lifting lemmas. *)
(** Derived lifting lemmas. *)
Lemma
wp_lift_pure_step
`{
Inhabited
(
state
Λ
)}
s
E
E'
Φ
e1
:
Lemma
wp_lift_pure_step
`{
Inhabited
(
state
Λ
)}
s
E
E'
Φ
e1
:
to_val
e1
=
None
→
(
∀
σ1
,
if
s
is
not_stuck
then
reducible
e1
σ1
else
to_val
e1
=
None
)
→
(
∀
σ1
,
if
s
is
not_stuck
then
reducible
e1
σ1
else
True
)
→
(
∀
σ1
e2
σ2
efs
,
prim_step
e1
σ1
e2
σ2
efs
→
σ1
=
σ2
)
→
(
∀
σ1
e2
σ2
efs
,
prim_step
e1
σ1
e2
σ2
efs
→
σ1
=
σ2
)
→
(|
=
{
E
,
E'
}
▷=>
∀
e2
efs
σ
,
⌜
prim_step
e1
σ
e2
σ
efs
⌝
→
(|
=
{
E
,
E'
}
▷=>
∀
e2
efs
σ
,
⌜
prim_step
e1
σ
e2
σ
efs
⌝
→
WP
e2
@
s
;
E
{{
Φ
}}
∗
[
∗
list
]
ef
∈
efs
,
WP
ef
@
s
;
⊤
{{
_,
True
}})
WP
e2
@
s
;
E
{{
Φ
}}
∗
[
∗
list
]
ef
∈
efs
,
WP
ef
@
s
;
⊤
{{
_,
True
}})
⊢
WP
e1
@
s
;
E
{{
Φ
}}
.
⊢
WP
e1
@
s
;
E
{{
Φ
}}
.
Proof
.
Proof
.
iIntros
(?
Hsafe
Hstep
)
"H"
.
iApply
wp_lift_step
;
first
done
.
iIntros
(
Hsafe
Hstep
)
"H"
.
iApply
wp_lift_step
.
{
specialize
(
Hsafe
inhabitant
)
.
destruct
s
;
last
done
.
by
eapply
reducible_not_val
.
}
iIntros
(
σ1
)
"Hσ"
.
iMod
"H"
.
iIntros
(
σ1
)
"Hσ"
.
iMod
"H"
.
iMod
fupd_intro_mask'
as
"Hclose"
;
last
iModIntro
;
first
by
set_solver
.
iMod
fupd_intro_mask'
as
"Hclose"
;
last
iModIntro
;
first
by
set_solver
.
iSplit
.
iSplit
;
first
by
iPureIntro
;
apply
Hsafe
.
iNext
.
iIntros
(
e2
σ2
efs
?)
.
{
iPureIntro
.
destruct
s
;
done
.
}
iNext
.
iIntros
(
e2
σ2
efs
?)
.
destruct
(
Hstep
σ1
e2
σ2
efs
);
auto
;
subst
.
destruct
(
Hstep
σ1
e2
σ2
efs
);
auto
;
subst
.
iMod
"Hclose"
as
"_"
.
iFrame
"Hσ"
.
iMod
"H"
.
iApply
"H"
;
auto
.
iMod
"Hclose"
as
"_"
.
iFrame
"Hσ"
.
iMod
"H"
.
iApply
"H"
;
auto
.
Qed
.
Qed
.
...
@@ -83,13 +85,12 @@ Proof.
...
@@ -83,13 +85,12 @@ Proof.
Qed
.
Qed
.
Lemma
wp_lift_pure_det_step
`{
Inhabited
(
state
Λ
)}
{
s
E
E'
Φ
}
e1
e2
efs
:
Lemma
wp_lift_pure_det_step
`{
Inhabited
(
state
Λ
)}
{
s
E
E'
Φ
}
e1
e2
efs
:
to_val
e1
=
None
→
(
∀
σ1
,
if
s
is
not_stuck
then
reducible
e1
σ1
else
to_val
e1
=
None
)
→
(
∀
σ1
,
if
s
is
not_stuck
then
reducible
e1
σ1
else
true
)
→
(
∀
σ1
e2'
σ2
efs'
,
prim_step
e1
σ1
e2'
σ2
efs'
→
σ1
=
σ2
∧
e2
=
e2'
∧
efs
=
efs'
)
→
(
∀
σ1
e2'
σ2
efs'
,
prim_step
e1
σ1
e2'
σ2
efs'
→
σ1
=
σ2
∧
e2
=
e2'
∧
efs
=
efs'
)
→
(|
=
{
E
,
E'
}
▷=>
WP
e2
@
s
;
E
{{
Φ
}}
∗
[
∗
list
]
ef
∈
efs
,
WP
ef
@
s
;
⊤
{{
_,
True
}})
(|
=
{
E
,
E'
}
▷=>
WP
e2
@
s
;
E
{{
Φ
}}
∗
[
∗
list
]
ef
∈
efs
,
WP
ef
@
s
;
⊤
{{
_,
True
}})
⊢
WP
e1
@
s
;
E
{{
Φ
}}
.
⊢
WP
e1
@
s
;
E
{{
Φ
}}
.
Proof
.
Proof
.
iIntros
(?
?
Hpuredet
)
"H"
.
iApply
(
wp_lift_pure_step
s
E
E'
);
try
done
.
iIntros
(?
Hpuredet
)
"H"
.
iApply
(
wp_lift_pure_step
s
E
E'
);
try
done
.
{
by
intros
;
eapply
Hpuredet
.
}
{
by
intros
;
eapply
Hpuredet
.
}
iApply
(
step_fupd_wand
with
"H"
);
iIntros
"H"
.
iApply
(
step_fupd_wand
with
"H"
);
iIntros
"H"
.
by
iIntros
(
e'
efs'
σ
(_
&
->
&
->
)
%
Hpuredet
)
.
by
iIntros
(
e'
efs'
σ
(_
&
->
&
->
)
%
Hpuredet
)
.
...
@@ -102,9 +103,8 @@ Lemma wp_pure_step_fupd `{Inhabited (state Λ)} s E E' e1 e2 φ Φ :
...
@@ -102,9 +103,8 @@ Lemma wp_pure_step_fupd `{Inhabited (state Λ)} s E E' e1 e2 φ Φ :
Proof
.
Proof
.
iIntros
([??]
Hφ
)
"HWP"
.
iIntros
([??]
Hφ
)
"HWP"
.
iApply
(
wp_lift_pure_det_step
with
"[HWP]"
)
.
iApply
(
wp_lift_pure_det_step
with
"[HWP]"
)
.
-
apply
(
reducible_not_val
_
inhabitant
)
.
by
auto
.
-
intros
σ
.
specialize
(
pure_exec_safe
σ
)
.
destruct
s
;
eauto
using
reducible_not_val
.
-
destruct
s
;
naive_solver
.
-
destruct
s
;
naive_solver
.
-
naive_solver
.
-
by
rewrite
big_sepL_nil
right_id
.
-
by
rewrite
big_sepL_nil
right_id
.
Qed
.
Qed
.
...
...
This diff is collapsed.
Click to expand it.
theories/program_logic/ownp.v
+
40
−
47
View file @
52f90871
...
@@ -86,20 +86,23 @@ Section lifting.
...
@@ -86,20 +86,23 @@ Section lifting.
Proof
.
rewrite
/
ownP
;
apply
_
.
Qed
.
Proof
.
rewrite
/
ownP
;
apply
_
.
Qed
.
Lemma
ownP_lift_step
s
E
Φ
e1
:
Lemma
ownP_lift_step
s
E
Φ
e1
:
to_val
e1
=
None
→
(|
=
{
E
,
∅
}=>
∃
σ1
,
⌜
if
s
is
not_stuck
then
reducible
e1
σ1
else
to_val
e1
=
None
⌝
∗
▷
ownP
σ1
∗
(|
=
{
E
,
∅
}=>
∃
σ1
,
⌜
if
s
is
not_stuck
then
reducible
e1
σ1
else
True
⌝
∗
▷
ownP
σ1
∗
▷
∀
e2
σ2
efs
,
⌜
prim_step
e1
σ1
e2
σ2
efs
⌝
-∗
ownP
σ2
▷
∀
e2
σ2
efs
,
⌜
prim_step
e1
σ1
e2
σ2
efs
⌝
-∗
ownP
σ2
=
{
∅
,
E
}
=∗
WP
e2
@
s
;
E
{{
Φ
}}
∗
[
∗
list
]
ef
∈
efs
,
WP
ef
@
s
;
⊤
{{
_,
True
}})
=
{
∅
,
E
}
=∗
WP
e2
@
s
;
E
{{
Φ
}}
∗
[
∗
list
]
ef
∈
efs
,
WP
ef
@
s
;
⊤
{{
_,
True
}})
⊢
WP
e1
@
s
;
E
{{
Φ
}}
.
⊢
WP
e1
@
s
;
E
{{
Φ
}}
.
Proof
.
Proof
.
iIntros
(?)
"H"
.
iApply
wp_lift_step
;
first
done
.
iIntros
"H"
.
destruct
(
to_val
e1
)
as
[
v
|]
eqn
:
EQe1
.
iIntros
(
σ1
)
"Hσ"
;
iMod
"H"
as
(
σ1'
)
"(% & >Hσf & H)"
.
-
apply
of_to_val
in
EQe1
as
<-.
iApply
fupd_wp
.
iDestruct
(
ownP_eq
with
"Hσ Hσf"
)
as
%->
.
iMod
"H"
as
(
σ1
)
"[Hred _]"
;
iDestruct
"Hred"
as
%
Hred
.
iModIntro
.
iSplit
;
first
done
.
iNext
.
iIntros
(
e2
σ2
efs
Hstep
)
.
destruct
s
;
last
done
.
apply
reducible_not_val
in
Hred
.
rewrite
/
ownP
;
iMod
(
own_update_2
with
"Hσ Hσf"
)
as
"[Hσ Hσf]"
.
move
:
Hred
;
by
rewrite
to_of_val
.
{
by
apply
auth_update
,
option_local_update
,
-
iApply
wp_lift_step
;
[
done
|];
iIntros
(
σ1
)
"Hσ"
.
(
exclusive_local_update
_
(
Excl
σ2
))
.
}
iMod
"H"
as
(
σ1'
?)
"[>Hσf H]"
.
iDestruct
(
ownP_eq
with
"Hσ Hσf"
)
as
%->
.
iFrame
"Hσ"
.
by
iApply
(
"H"
with
"[]"
);
eauto
.
iModIntro
;
iSplit
;
[
by
destruct
s
|];
iNext
;
iIntros
(
e2
σ2
efs
Hstep
)
.
rewrite
/
ownP
;
iMod
(
own_update_2
with
"Hσ Hσf"
)
as
"[Hσ Hσf]"
.
{
by
apply
auth_update
,
option_local_update
,
(
exclusive_local_update
_
(
Excl
σ2
))
.
}
iFrame
"Hσ"
.
iApply
(
"H"
with
"[]"
);
eauto
.
Qed
.
Qed
.
Lemma
ownP_lift_stuck
E
Φ
e
:
Lemma
ownP_lift_stuck
E
Φ
e
:
...
@@ -115,15 +118,16 @@ Section lifting.
...
@@ -115,15 +118,16 @@ Section lifting.
by
iDestruct
(
ownP_eq
with
"Hσ Hσf"
)
as
%->
.
by
iDestruct
(
ownP_eq
with
"Hσ Hσf"
)
as
%->
.
Qed
.
Qed
.
Lemma
ownP_lift_pure_step
s
E
Φ
e1
:
Lemma
ownP_lift_pure_step
`{
Inhabited
(
state
Λ
)}
s
E
Φ
e1
:
to_val
e1
=
None
→
(
∀
σ1
,
if
s
is
not_stuck
then
reducible
e1
σ1
else
to_val
e1
=
None
)
→
(
∀
σ1
,
if
s
is
not_stuck
then
reducible
e1
σ1
else
True
)
→
(
∀
σ1
e2
σ2
efs
,
prim_step
e1
σ1
e2
σ2
efs
→
σ1
=
σ2
)
→
(
∀
σ1
e2
σ2
efs
,
prim_step
e1
σ1
e2
σ2
efs
→
σ1
=
σ2
)
→
(
▷
∀
e2
efs
σ
,
⌜
prim_step
e1
σ
e2
σ
efs
⌝
→
(
▷
∀
e2
efs
σ
,
⌜
prim_step
e1
σ
e2
σ
efs
⌝
→
WP
e2
@
s
;
E
{{
Φ
}}
∗
[
∗
list
]
ef
∈
efs
,
WP
ef
@
s
;
⊤
{{
_,
True
}})
WP
e2
@
s
;
E
{{
Φ
}}
∗
[
∗
list
]
ef
∈
efs
,
WP
ef
@
s
;
⊤
{{
_,
True
}})
⊢
WP
e1
@
s
;
E
{{
Φ
}}
.
⊢
WP
e1
@
s
;
E
{{
Φ
}}
.
Proof
.
Proof
.
iIntros
(?
Hsafe
Hstep
)
"H"
;
iApply
wp_lift_step
;
first
done
.
iIntros
(
Hsafe
Hstep
)
"H"
;
iApply
wp_lift_step
.
{
specialize
(
Hsafe
inhabitant
)
.
destruct
s
;
last
done
.
by
eapply
reducible_not_val
.
}
iIntros
(
σ1
)
"Hσ"
.
iMod
(
fupd_intro_mask'
E
∅
)
as
"Hclose"
;
first
set_solver
.
iIntros
(
σ1
)
"Hσ"
.
iMod
(
fupd_intro_mask'
E
∅
)
as
"Hclose"
;
first
set_solver
.
iModIntro
;
iSplit
;
[
by
destruct
s
|];
iNext
;
iIntros
(
e2
σ2
efs
?)
.
iModIntro
;
iSplit
;
[
by
destruct
s
|];
iNext
;
iIntros
(
e2
σ2
efs
?)
.
destruct
(
Hstep
σ1
e2
σ2
efs
);
auto
;
subst
.
destruct
(
Hstep
σ1
e2
σ2
efs
);
auto
;
subst
.
...
@@ -132,13 +136,12 @@ Section lifting.
...
@@ -132,13 +136,12 @@ Section lifting.
(** Derived lifting lemmas. *)
(** Derived lifting lemmas. *)
Lemma
ownP_lift_atomic_step
{
s
E
Φ
}
e1
σ1
:
Lemma
ownP_lift_atomic_step
{
s
E
Φ
}
e1
σ1
:
to_val
e1
=
None
→
(
if
s
is
not_stuck
then
reducible
e1
σ1
else
to_val
e1
=
None
)
→
(
if
s
is
not_stuck
then
reducible
e1
σ1
else
True
)
→
(
▷
ownP
σ1
∗
▷
∀
e2
σ2
efs
,
⌜
prim_step
e1
σ1
e2
σ2
efs
⌝
-∗
ownP
σ2
-∗
(
▷
ownP
σ1
∗
▷
∀
e2
σ2
efs
,
⌜
prim_step
e1
σ1
e2
σ2
efs
⌝
-∗
ownP
σ2
-∗
default
False
(
to_val
e2
)
Φ
∗
[
∗
list
]
ef
∈
efs
,
WP
ef
@
s
;
⊤
{{
_,
True
}})
default
False
(
to_val
e2
)
Φ
∗
[
∗
list
]
ef
∈
efs
,
WP
ef
@
s
;
⊤
{{
_,
True
}})
⊢
WP
e1
@
s
;
E
{{
Φ
}}
.
⊢
WP
e1
@
s
;
E
{{
Φ
}}
.
Proof
.
Proof
.
iIntros
(?
?
)
"[Hσ H]"
;
iApply
ownP_lift_step
;
first
done
.
iIntros
(?)
"[Hσ H]"
;
iApply
ownP_lift_step
.
iMod
(
fupd_intro_mask'
E
∅
)
as
"Hclose"
;
first
set_solver
.
iMod
(
fupd_intro_mask'
E
∅
)
as
"Hclose"
;
first
set_solver
.
iModIntro
;
iExists
σ1
;
iFrame
;
iSplit
;
first
by
destruct
s
.
iModIntro
;
iExists
σ1
;
iFrame
;
iSplit
;
first
by
destruct
s
.
iNext
;
iIntros
(
e2
σ2
efs
)
"% Hσ"
.
iNext
;
iIntros
(
e2
σ2
efs
)
"% Hσ"
.
...
@@ -148,22 +151,20 @@ Section lifting.
...
@@ -148,22 +151,20 @@ Section lifting.
Qed
.
Qed
.
Lemma
ownP_lift_atomic_det_step
{
s
E
Φ
e1
}
σ1
v2
σ2
efs
:
Lemma
ownP_lift_atomic_det_step
{
s
E
Φ
e1
}
σ1
v2
σ2
efs
:
to_val
e1
=
None
→
(
if
s
is
not_stuck
then
reducible
e1
σ1
else
to_val
e1
=
None
)
→
(
if
s
is
not_stuck
then
reducible
e1
σ1
else
True
)
→
(
∀
e2'
σ2'
efs'
,
prim_step
e1
σ1
e2'
σ2'
efs'
→
(
∀
e2'
σ2'
efs'
,
prim_step
e1
σ1
e2'
σ2'
efs'
→
σ2
=
σ2'
∧
to_val
e2'
=
Some
v2
∧
efs
=
efs'
)
→
σ2
=
σ2'
∧
to_val
e2'
=
Some
v2
∧
efs
=
efs'
)
→
▷
ownP
σ1
∗
▷
(
ownP
σ2
-∗
▷
ownP
σ1
∗
▷
(
ownP
σ2
-∗
Φ
v2
∗
[
∗
list
]
ef
∈
efs
,
WP
ef
@
s
;
⊤
{{
_,
True
}})
Φ
v2
∗
[
∗
list
]
ef
∈
efs
,
WP
ef
@
s
;
⊤
{{
_,
True
}})
⊢
WP
e1
@
s
;
E
{{
Φ
}}
.
⊢
WP
e1
@
s
;
E
{{
Φ
}}
.
Proof
.
Proof
.
iIntros
(?
?
Hdet
)
"[Hσ1 Hσ2]"
;
iApply
ownP_lift_atomic_step
;
try
done
.
iIntros
(?
Hdet
)
"[Hσ1 Hσ2]"
;
iApply
ownP_lift_atomic_step
;
try
done
.
iFrame
;
iNext
;
iIntros
(
e2'
σ2'
efs'
)
"% Hσ2'"
.
iFrame
;
iNext
;
iIntros
(
e2'
σ2'
efs'
)
"% Hσ2'"
.
edestruct
Hdet
as
(
->
&
Hval
&
->
)
.
done
.
by
rewrite
Hval
;
iApply
"Hσ2"
.
edestruct
Hdet
as
(
->
&
Hval
&
->
)
.
done
.
by
rewrite
Hval
;
iApply
"Hσ2"
.
Qed
.
Qed
.
Lemma
ownP_lift_atomic_det_step_no_fork
{
s
E
e1
}
σ1
v2
σ2
:
Lemma
ownP_lift_atomic_det_step_no_fork
{
s
E
e1
}
σ1
v2
σ2
:
to_val
e1
=
None
→
(
if
s
is
not_stuck
then
reducible
e1
σ1
else
to_val
e1
=
None
)
→
(
if
s
is
not_stuck
then
reducible
e1
σ1
else
True
)
→
(
∀
e2'
σ2'
efs'
,
prim_step
e1
σ1
e2'
σ2'
efs'
→
(
∀
e2'
σ2'
efs'
,
prim_step
e1
σ1
e2'
σ2'
efs'
→
σ2
=
σ2'
∧
to_val
e2'
=
Some
v2
∧
[]
=
efs'
)
→
σ2
=
σ2'
∧
to_val
e2'
=
Some
v2
∧
[]
=
efs'
)
→
{{{
▷
ownP
σ1
}}}
e1
@
s
;
E
{{{
RET
v2
;
ownP
σ2
}}}
.
{{{
▷
ownP
σ1
}}}
e1
@
s
;
E
{{{
RET
v2
;
ownP
σ2
}}}
.
...
@@ -172,20 +173,18 @@ Section lifting.
...
@@ -172,20 +173,18 @@ Section lifting.
rewrite
big_sepL_nil
right_id
.
by
apply
uPred
.
wand_intro_r
.
rewrite
big_sepL_nil
right_id
.
by
apply
uPred
.
wand_intro_r
.
Qed
.
Qed
.
Lemma
ownP_lift_pure_det_step
{
s
E
Φ
}
e1
e2
efs
:
Lemma
ownP_lift_pure_det_step
`{
Inhabited
(
state
Λ
)}
{
s
E
Φ
}
e1
e2
efs
:
to_val
e1
=
None
→
(
∀
σ1
,
if
s
is
not_stuck
then
reducible
e1
σ1
else
to_val
e1
=
None
)
→
(
∀
σ1
,
if
s
is
not_stuck
then
reducible
e1
σ1
else
True
)
→
(
∀
σ1
e2'
σ2
efs'
,
prim_step
e1
σ1
e2'
σ2
efs'
→
σ1
=
σ2
∧
e2
=
e2'
∧
efs
=
efs'
)
→
(
∀
σ1
e2'
σ2
efs'
,
prim_step
e1
σ1
e2'
σ2
efs'
→
σ1
=
σ2
∧
e2
=
e2'
∧
efs
=
efs'
)
→
▷
(
WP
e2
@
s
;
E
{{
Φ
}}
∗
[
∗
list
]
ef
∈
efs
,
WP
ef
@
s
;
⊤
{{
_,
True
}})
▷
(
WP
e2
@
s
;
E
{{
Φ
}}
∗
[
∗
list
]
ef
∈
efs
,
WP
ef
@
s
;
⊤
{{
_,
True
}})
⊢
WP
e1
@
s
;
E
{{
Φ
}}
.
⊢
WP
e1
@
s
;
E
{{
Φ
}}
.
Proof
.
Proof
.
iIntros
(?
?
Hpuredet
)
"?"
;
iApply
ownP_lift_pure_step
=>
//.
iIntros
(?
Hpuredet
)
"?"
;
iApply
ownP_lift_pure_step
=>
//.
by
apply
Hpuredet
.
by
iNext
;
iIntros
(
e'
efs'
σ
(_
&
->
&
->
)
%
Hpuredet
)
.
by
apply
Hpuredet
.
by
iNext
;
iIntros
(
e'
efs'
σ
(_
&
->
&
->
)
%
Hpuredet
)
.
Qed
.
Qed
.
Lemma
ownP_lift_pure_det_step_no_fork
`{
Inhabited
(
state
Λ
)}
{
s
E
Φ
}
e1
e2
:
Lemma
ownP_lift_pure_det_step_no_fork
`{
Inhabited
(
state
Λ
)}
{
s
E
Φ
}
e1
e2
:
to_val
e1
=
None
→
(
∀
σ1
,
if
s
is
not_stuck
then
reducible
e1
σ1
else
to_val
e1
=
None
)
→
(
∀
σ1
,
if
s
is
not_stuck
then
reducible
e1
σ1
else
True
)
→
(
∀
σ1
e2'
σ2
efs'
,
prim_step
e1
σ1
e2'
σ2
efs'
→
σ1
=
σ2
∧
e2
=
e2'
∧
[]
=
efs'
)
→
(
∀
σ1
e2'
σ2
efs'
,
prim_step
e1
σ1
e2'
σ2
efs'
→
σ1
=
σ2
∧
e2
=
e2'
∧
[]
=
efs'
)
→
▷
WP
e2
@
s
;
E
{{
Φ
}}
⊢
WP
e1
@
s
;
E
{{
Φ
}}
.
▷
WP
e2
@
s
;
E
{{
Φ
}}
⊢
WP
e1
@
s
;
E
{{
Φ
}}
.
Proof
.
Proof
.
...
@@ -204,15 +203,15 @@ Section ectx_lifting.
...
@@ -204,15 +203,15 @@ Section ectx_lifting.
Hint
Resolve
head_stuck_stuck
.
Hint
Resolve
head_stuck_stuck
.
Lemma
ownP_lift_head_step
s
E
Φ
e1
:
Lemma
ownP_lift_head_step
s
E
Φ
e1
:
to_val
e1
=
None
→
(|
=
{
E
,
∅
}=>
∃
σ1
,
⌜
head_reducible
e1
σ1
⌝
∗
▷
ownP
σ1
∗
(|
=
{
E
,
∅
}=>
∃
σ1
,
⌜
head_reducible
e1
σ1
⌝
∗
▷
ownP
σ1
∗
▷
∀
e2
σ2
efs
,
⌜
head_step
e1
σ1
e2
σ2
efs
⌝
-∗
ownP
σ2
▷
∀
e2
σ2
efs
,
⌜
head_step
e1
σ1
e2
σ2
efs
⌝
-∗
ownP
σ2
=
{
∅
,
E
}
=∗
WP
e2
@
s
;
E
{{
Φ
}}
∗
[
∗
list
]
ef
∈
efs
,
WP
ef
@
s
;
⊤
{{
_,
True
}})
=
{
∅
,
E
}
=∗
WP
e2
@
s
;
E
{{
Φ
}}
∗
[
∗
list
]
ef
∈
efs
,
WP
ef
@
s
;
⊤
{{
_,
True
}})
⊢
WP
e1
@
s
;
E
{{
Φ
}}
.
⊢
WP
e1
@
s
;
E
{{
Φ
}}
.
Proof
.
Proof
.
iIntros
(?)
"H"
.
iApply
ownP_lift_step
;
first
done
.
iIntros
"H"
.
iApply
ownP_lift_step
.
iMod
"H"
as
(
σ1
?)
"[Hσ1 Hwp]"
.
iModIntro
.
iExists
σ1
.
iMod
"H"
as
(
σ1
?)
"[Hσ1 Hwp]"
.
iModIntro
.
iExists
σ1
.
iSplit
.
iSplit
;
first
by
destruct
s
;
eauto
.
iFrame
.
iNext
.
iIntros
(
e2
σ2
efs
)
"% ?"
.
{
destruct
s
;
try
by
eauto
using
reducible_not_val
.
}
iFrame
.
iNext
.
iIntros
(
e2
σ2
efs
)
"% ?"
.
iApply
(
"Hwp"
with
"[]"
);
eauto
.
iApply
(
"Hwp"
with
"[]"
);
eauto
.
Qed
.
Qed
.
...
@@ -226,71 +225,65 @@ Section ectx_lifting.
...
@@ -226,71 +225,65 @@ Section ectx_lifting.
Qed
.
Qed
.
Lemma
ownP_lift_pure_head_step
s
E
Φ
e1
:
Lemma
ownP_lift_pure_head_step
s
E
Φ
e1
:
to_val
e1
=
None
→
(
∀
σ1
,
head_reducible
e1
σ1
)
→
(
∀
σ1
,
head_reducible
e1
σ1
)
→
(
∀
σ1
e2
σ2
efs
,
head_step
e1
σ1
e2
σ2
efs
→
σ1
=
σ2
)
→
(
∀
σ1
e2
σ2
efs
,
head_step
e1
σ1
e2
σ2
efs
→
σ1
=
σ2
)
→
(
▷
∀
e2
efs
σ
,
⌜
head_step
e1
σ
e2
σ
efs
⌝
→
(
▷
∀
e2
efs
σ
,
⌜
head_step
e1
σ
e2
σ
efs
⌝
→
WP
e2
@
s
;
E
{{
Φ
}}
∗
[
∗
list
]
ef
∈
efs
,
WP
ef
@
s
;
⊤
{{
_,
True
}})
WP
e2
@
s
;
E
{{
Φ
}}
∗
[
∗
list
]
ef
∈
efs
,
WP
ef
@
s
;
⊤
{{
_,
True
}})
⊢
WP
e1
@
s
;
E
{{
Φ
}}
.
⊢
WP
e1
@
s
;
E
{{
Φ
}}
.
Proof
using
Hinh
.
Proof
using
Hinh
.
iIntros
(??
?
)
"H"
.
iApply
ownP_lift_pure_step
;
eauto
.
iIntros
(??)
"H"
.
iApply
ownP_lift_pure_step
;
eauto
.
{
by
destruct
s
;
auto
.
}
{
by
destruct
s
;
auto
.
}
iNext
.
iIntros
(????)
.
iApply
"H"
;
eauto
.
iNext
.
iIntros
(????)
.
iApply
"H"
;
eauto
.
Qed
.
Qed
.
Lemma
ownP_lift_atomic_head_step
{
s
E
Φ
}
e1
σ1
:
Lemma
ownP_lift_atomic_head_step
{
s
E
Φ
}
e1
σ1
:
to_val
e1
=
None
→
head_reducible
e1
σ1
→
head_reducible
e1
σ1
→
▷
ownP
σ1
∗
▷
(
∀
e2
σ2
efs
,
▷
ownP
σ1
∗
▷
(
∀
e2
σ2
efs
,
⌜
head_step
e1
σ1
e2
σ2
efs
⌝
-∗
ownP
σ2
-∗
⌜
head_step
e1
σ1
e2
σ2
efs
⌝
-∗
ownP
σ2
-∗
default
False
(
to_val
e2
)
Φ
∗
[
∗
list
]
ef
∈
efs
,
WP
ef
@
s
;
⊤
{{
_,
True
}})
default
False
(
to_val
e2
)
Φ
∗
[
∗
list
]
ef
∈
efs
,
WP
ef
@
s
;
⊤
{{
_,
True
}})
⊢
WP
e1
@
s
;
E
{{
Φ
}}
.
⊢
WP
e1
@
s
;
E
{{
Φ
}}
.
Proof
.
Proof
.
iIntros
(?
?
)
"[? H]"
.
iApply
ownP_lift_atomic_step
;
eauto
.
iIntros
(?)
"[? H]"
.
iApply
ownP_lift_atomic_step
;
eauto
.
{
by
destruct
s
;
eauto
.
}
{
by
destruct
s
;
eauto
using
reducible_not_val
.
}
iFrame
.
iNext
.
iIntros
(???)
"% ?"
.
iApply
(
"H"
with
"[]"
);
eauto
.
iFrame
.
iNext
.
iIntros
(???)
"% ?"
.
iApply
(
"H"
with
"[]"
);
eauto
.
Qed
.
Qed
.
Lemma
ownP_lift_atomic_det_head_step
{
s
E
Φ
e1
}
σ1
v2
σ2
efs
:
Lemma
ownP_lift_atomic_det_head_step
{
s
E
Φ
e1
}
σ1
v2
σ2
efs
:
to_val
e1
=
None
→
head_reducible
e1
σ1
→
head_reducible
e1
σ1
→
(
∀
e2'
σ2'
efs'
,
head_step
e1
σ1
e2'
σ2'
efs'
→
(
∀
e2'
σ2'
efs'
,
head_step
e1
σ1
e2'
σ2'
efs'
→
σ2
=
σ2'
∧
to_val
e2'
=
Some
v2
∧
efs
=
efs'
)
→
σ2
=
σ2'
∧
to_val
e2'
=
Some
v2
∧
efs
=
efs'
)
→
▷
ownP
σ1
∗
▷
(
ownP
σ2
-∗
Φ
v2
∗
[
∗
list
]
ef
∈
efs
,
WP
ef
@
s
;
⊤
{{
_,
True
}})
▷
ownP
σ1
∗
▷
(
ownP
σ2
-∗
Φ
v2
∗
[
∗
list
]
ef
∈
efs
,
WP
ef
@
s
;
⊤
{{
_,
True
}})
⊢
WP
e1
@
s
;
E
{{
Φ
}}
.
⊢
WP
e1
@
s
;
E
{{
Φ
}}
.
Proof
.
Proof
.
by
destruct
s
;
eauto
10
using
ownP_lift_atomic_det_step
.
by
destruct
s
;
eauto
10
using
ownP_lift_atomic_det_step
,
reducible_not_val
.
Qed
.
Qed
.
Lemma
ownP_lift_atomic_det_head_step_no_fork
{
s
E
e1
}
σ1
v2
σ2
:
Lemma
ownP_lift_atomic_det_head_step_no_fork
{
s
E
e1
}
σ1
v2
σ2
:
to_val
e1
=
None
→
head_reducible
e1
σ1
→
head_reducible
e1
σ1
→
(
∀
e2'
σ2'
efs'
,
head_step
e1
σ1
e2'
σ2'
efs'
→
(
∀
e2'
σ2'
efs'
,
head_step
e1
σ1
e2'
σ2'
efs'
→
σ2
=
σ2'
∧
to_val
e2'
=
Some
v2
∧
[]
=
efs'
)
→
σ2
=
σ2'
∧
to_val
e2'
=
Some
v2
∧
[]
=
efs'
)
→
{{{
▷
ownP
σ1
}}}
e1
@
s
;
E
{{{
RET
v2
;
ownP
σ2
}}}
.
{{{
▷
ownP
σ1
}}}
e1
@
s
;
E
{{{
RET
v2
;
ownP
σ2
}}}
.
Proof
.
Proof
.
intros
???;
apply
ownP_lift_atomic_det_step_no_fork
;
eauto
.
intros
???;
apply
ownP_lift_atomic_det_step_no_fork
;
eauto
.
by
destruct
s
;
eauto
.
by
destruct
s
;
eauto
using
reducible_not_val
.
Qed
.
Qed
.
Lemma
ownP_lift_pure_det_head_step
{
s
E
Φ
}
e1
e2
efs
:
Lemma
ownP_lift_pure_det_head_step
{
s
E
Φ
}
e1
e2
efs
:
to_val
e1
=
None
→
(
∀
σ1
,
head_reducible
e1
σ1
)
→
(
∀
σ1
,
head_reducible
e1
σ1
)
→
(
∀
σ1
e2'
σ2
efs'
,
head_step
e1
σ1
e2'
σ2
efs'
→
σ1
=
σ2
∧
e2
=
e2'
∧
efs
=
efs'
)
→
(
∀
σ1
e2'
σ2
efs'
,
head_step
e1
σ1
e2'
σ2
efs'
→
σ1
=
σ2
∧
e2
=
e2'
∧
efs
=
efs'
)
→
▷
(
WP
e2
@
s
;
E
{{
Φ
}}
∗
[
∗
list
]
ef
∈
efs
,
WP
ef
@
s
;
⊤
{{
_,
True
}})
▷
(
WP
e2
@
s
;
E
{{
Φ
}}
∗
[
∗
list
]
ef
∈
efs
,
WP
ef
@
s
;
⊤
{{
_,
True
}})
⊢
WP
e1
@
s
;
E
{{
Φ
}}
.
⊢
WP
e1
@
s
;
E
{{
Φ
}}
.
Proof
using
Hinh
.
Proof
using
Hinh
.
iIntros
(??
?
)
"H"
;
iApply
wp_lift_pure_det_step
;
eauto
.
iIntros
(??)
"H"
;
iApply
wp_lift_pure_det_step
;
eauto
.
by
destruct
s
;
eauto
.
by
destruct
s
;
eauto
using
reducible_not_val
.
Qed
.
Qed
.
Lemma
ownP_lift_pure_det_head_step_no_fork
{
s
E
Φ
}
e1
e2
:
Lemma
ownP_lift_pure_det_head_step_no_fork
{
s
E
Φ
}
e1
e2
:
to_val
e1
=
None
→
(
∀
σ1
,
head_reducible
e1
σ1
)
→
(
∀
σ1
,
head_reducible
e1
σ1
)
→
(
∀
σ1
e2'
σ2
efs'
,
head_step
e1
σ1
e2'
σ2
efs'
→
σ1
=
σ2
∧
e2
=
e2'
∧
[]
=
efs'
)
→
(
∀
σ1
e2'
σ2
efs'
,
head_step
e1
σ1
e2'
σ2
efs'
→
σ1
=
σ2
∧
e2
=
e2'
∧
[]
=
efs'
)
→
▷
WP
e2
@
s
;
E
{{
Φ
}}
⊢
WP
e1
@
s
;
E
{{
Φ
}}
.
▷
WP
e2
@
s
;
E
{{
Φ
}}
⊢
WP
e1
@
s
;
E
{{
Φ
}}
.
Proof
using
Hinh
.
Proof
using
Hinh
.
iIntros
(??
?
)
"H"
.
iApply
ownP_lift_pure_det_step_no_fork
;
eauto
.
iIntros
(??)
"H"
.
iApply
ownP_lift_pure_det_step_no_fork
;
eauto
.
by
destruct
s
;
eauto
.
by
destruct
s
;
eauto
using
reducible_not_val
.
Qed
.
Qed
.
End
ectx_lifting
.
End
ectx_lifting
.
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment