Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Terraform modules
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Pierre Roux
Iris
Commits
51b04b25
Commit
51b04b25
authored
9 years ago
by
Robbert Krebbers
Browse files
Options
Downloads
Patches
Plain Diff
RAs with empty (global unit) element.
parent
8dc73363
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
4
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
iris/auth.v
+5
-2
5 additions, 2 deletions
iris/auth.v
iris/cmra.v
+1
-1
1 addition, 1 deletion
iris/cmra.v
iris/excl.v
+8
-4
8 additions, 4 deletions
iris/excl.v
iris/ra.v
+16
-2
16 additions, 2 deletions
iris/ra.v
with
30 additions
and
9 deletions
iris/auth.v
+
5
−
2
View file @
51b04b25
...
@@ -9,6 +9,7 @@ Arguments own {_} _.
...
@@ -9,6 +9,7 @@ Arguments own {_} _.
Notation
"∘ x"
:=
(
Auth
ExclUnit
x
)
(
at
level
20
)
.
Notation
"∘ x"
:=
(
Auth
ExclUnit
x
)
(
at
level
20
)
.
Notation
"∙ x"
:=
(
Auth
(
Excl
x
)
∅
)
(
at
level
20
)
.
Notation
"∙ x"
:=
(
Auth
(
Excl
x
)
∅
)
(
at
level
20
)
.
Instance
auth_empty
`{
Empty
A
}
:
Empty
(
auth
A
)
:=
Auth
∅
∅.
Instance
auth_valid
`{
Valid
A
,
Included
A
}
:
Valid
(
auth
A
)
:=
λ
x
,
Instance
auth_valid
`{
Valid
A
,
Included
A
}
:
Valid
(
auth
A
)
:=
λ
x
,
valid
(
authorative
x
)
∧
excl_above
(
own
x
)
(
authorative
x
)
.
valid
(
authorative
x
)
∧
excl_above
(
own
x
)
(
authorative
x
)
.
Instance
auth_equiv
`{
Equiv
A
}
:
Equiv
(
auth
A
)
:=
λ
x
y
,
Instance
auth_equiv
`{
Equiv
A
}
:
Equiv
(
auth
A
)
:=
λ
x
y
,
...
@@ -44,7 +45,9 @@ Proof.
...
@@ -44,7 +45,9 @@ Proof.
by
apply
excl_above_weaken
with
(
own
x
⋅
own
y
)
by
apply
excl_above_weaken
with
(
own
x
⋅
own
y
)
(
authorative
x
⋅
authorative
y
);
try
apply
ra_included_l
.
(
authorative
x
⋅
authorative
y
);
try
apply
ra_included_l
.
*
split
;
simpl
;
apply
ra_included_l
.
*
split
;
simpl
;
apply
ra_included_l
.
*
by
intros
??
[??];
split
;
simpl
;
apply
ra_op_
difference
.
*
by
intros
??
[??];
split
;
simpl
;
apply
ra_op_
minus
.
Qed
.
Qed
.
Instance
auth_ra_empty
`{
RA
A
,
Empty
A
,
!
RAEmpty
A
}
:
RAEmpty
(
auth
A
)
.
Proof
.
split
.
done
.
by
intros
x
;
constructor
;
simpl
;
rewrite
(
left_id
_
_)
.
Qed
.
Lemma
auth_frag_op
`{
RA
A
}
a
b
:
∘
(
a
⋅
b
)
≡
∘
a
⋅
∘
b
.
Lemma
auth_frag_op
`{
RA
A
}
a
b
:
∘
(
a
⋅
b
)
≡
∘
a
⋅
∘
b
.
Proof
.
done
.
Qed
.
Proof
.
done
.
Qed
.
\ No newline at end of file
This diff is collapsed.
Click to expand it.
iris/cmra.v
+
1
−
1
View file @
51b04b25
...
@@ -24,7 +24,7 @@ Class CMRA A `{Equiv A, Compl A,
...
@@ -24,7 +24,7 @@ Class CMRA A `{Equiv A, Compl A,
cmra_unit_weaken
x
y
:
unit
x
≼
unit
(
x
⋅
y
);
cmra_unit_weaken
x
y
:
unit
x
≼
unit
(
x
⋅
y
);
cmra_valid_op_l
n
x
y
:
validN
n
(
x
⋅
y
)
→
validN
n
x
;
cmra_valid_op_l
n
x
y
:
validN
n
(
x
⋅
y
)
→
validN
n
x
;
cmra_included_l
x
y
:
x
≼
x
⋅
y
;
cmra_included_l
x
y
:
x
≼
x
⋅
y
;
cmra_op_
difference
x
y
:
x
≼
y
→
x
⋅
y
⩪
x
≡
y
cmra_op_
minus
x
y
:
x
≼
y
→
x
⋅
y
⩪
x
≡
y
}
.
}
.
Class
CMRAExtend
A
`{
Equiv
A
,
Dist
A
,
Op
A
,
ValidN
A
}
:=
Class
CMRAExtend
A
`{
Equiv
A
,
Dist
A
,
Op
A
,
ValidN
A
}
:=
cmra_extend_op
x
y1
y2
n
:
cmra_extend_op
x
y1
y2
n
:
...
...
This diff is collapsed.
Click to expand it.
iris/excl.v
+
8
−
4
View file @
51b04b25
...
@@ -4,20 +4,22 @@ Local Arguments included _ _ !_ !_ /.
...
@@ -4,20 +4,22 @@ Local Arguments included _ _ !_ !_ /.
Inductive
excl
(
A
:
Type
)
:=
Inductive
excl
(
A
:
Type
)
:=
|
Excl
:
A
→
excl
A
|
Excl
:
A
→
excl
A
|
ExclUnit
:
excl
A
|
ExclUnit
:
Empty
(
excl
A
)
|
ExclBot
:
excl
A
.
|
ExclBot
:
excl
A
.
Arguments
Excl
{_}
_
.
Arguments
Excl
{_}
_
.
Arguments
ExclUnit
{_}
.
Arguments
ExclUnit
{_}
.
Arguments
ExclBot
{_}
.
Arguments
ExclBot
{_}
.
Existing
Instance
ExclUnit
.
Inductive
excl_equiv
`{
Equiv
A
}
:
Equiv
(
excl
A
)
:=
Inductive
excl_equiv
`{
Equiv
A
}
:
Equiv
(
excl
A
)
:=
|
Excl_equiv
(
x
y
:
A
)
:
x
≡
y
→
Excl
x
≡
Excl
y
|
Excl_equiv
(
x
y
:
A
)
:
x
≡
y
→
Excl
x
≡
Excl
y
|
ExclUnit_equiv
:
ExclUnit
≡
ExclUnit
|
ExclUnit_equiv
:
∅
≡
∅
|
ExclBot_equiv
:
ExclBot
≡
ExclBot
.
|
ExclBot_equiv
:
ExclBot
≡
ExclBot
.
Existing
Instance
excl_equiv
.
Existing
Instance
excl_equiv
.
Instance
excl_valid
{
A
}
:
Valid
(
excl
A
)
:=
λ
x
,
Instance
excl_valid
{
A
}
:
Valid
(
excl
A
)
:=
λ
x
,
match
x
with
Excl
_
|
ExclUnit
=>
True
|
ExclBot
=>
False
end
.
match
x
with
Excl
_
|
ExclUnit
=>
True
|
ExclBot
=>
False
end
.
Instance
excl_unit
{
A
}
:
Unit
(
excl
A
)
:=
λ
_,
ExclUnit
.
Instance
excl_empty
{
A
}
:
Empty
(
excl
A
)
:=
ExclUnit
.
Instance
excl_unit
{
A
}
:
Unit
(
excl
A
)
:=
λ
_,
∅.
Instance
excl_op
{
A
}
:
Op
(
excl
A
)
:=
λ
x
y
,
Instance
excl_op
{
A
}
:
Op
(
excl
A
)
:=
λ
x
y
,
match
x
,
y
with
match
x
,
y
with
|
Excl
x
,
ExclUnit
|
ExclUnit
,
Excl
x
=>
Excl
x
|
Excl
x
,
ExclUnit
|
ExclUnit
,
Excl
x
=>
Excl
x
...
@@ -60,6 +62,8 @@ Proof.
...
@@ -60,6 +62,8 @@ Proof.
*
by
intros
[?|
|]
[?|
|];
simpl
;
try
constructor
.
*
by
intros
[?|
|]
[?|
|];
simpl
;
try
constructor
.
*
by
intros
[?|
|]
[?|
|]
?;
try
constructor
.
*
by
intros
[?|
|]
[?|
|]
?;
try
constructor
.
Qed
.
Qed
.
Instance
excl_empty_ra
`{
Equiv
A
,
!
Equivalence
(
@
equiv
A
_)}
:
RAEmpty
(
excl
A
)
.
Proof
.
split
.
done
.
by
intros
[]
.
Qed
.
Lemma
excl_update
{
A
}
(
x
:
A
)
y
:
valid
y
→
Excl
x
⇝
y
.
Lemma
excl_update
{
A
}
(
x
:
A
)
y
:
valid
y
→
Excl
x
⇝
y
.
Proof
.
by
destruct
y
;
intros
?
[?|
|]
.
Qed
.
Proof
.
by
destruct
y
;
intros
?
[?|
|]
.
Qed
.
...
@@ -73,4 +77,4 @@ Section excl_above.
...
@@ -73,4 +77,4 @@ Section excl_above.
destruct
x
as
[
a'
|
|],
y
as
[
b'
|
|];
simpl
;
intros
??;
try
done
.
destruct
x
as
[
a'
|
|],
y
as
[
b'
|
|];
simpl
;
intros
??;
try
done
.
by
intros
Hab
;
rewrite
Hab
;
transitivity
b
.
by
intros
Hab
;
rewrite
Hab
;
transitivity
b
.
Qed
.
Qed
.
End
excl_above
.
End
excl_above
.
\ No newline at end of file
This diff is collapsed.
Click to expand it.
iris/ra.v
+
16
−
2
View file @
51b04b25
...
@@ -37,7 +37,11 @@ Class RA A `{Equiv A, Valid A, Unit A, Op A, Included A, Minus A} : Prop := {
...
@@ -37,7 +37,11 @@ Class RA A `{Equiv A, Valid A, Unit A, Op A, Included A, Minus A} : Prop := {
ra_unit_weaken
x
y
:
unit
x
≼
unit
(
x
⋅
y
);
ra_unit_weaken
x
y
:
unit
x
≼
unit
(
x
⋅
y
);
ra_valid_op_l
x
y
:
valid
(
x
⋅
y
)
→
valid
x
;
ra_valid_op_l
x
y
:
valid
(
x
⋅
y
)
→
valid
x
;
ra_included_l
x
y
:
x
≼
x
⋅
y
;
ra_included_l
x
y
:
x
≼
x
⋅
y
;
ra_op_difference
x
y
:
x
≼
y
→
x
⋅
y
⩪
x
≡
y
ra_op_minus
x
y
:
x
≼
y
→
x
⋅
y
⩪
x
≡
y
}
.
Class
RAEmpty
A
`{
Equiv
A
,
Valid
A
,
Op
A
,
Empty
A
}
:
Prop
:=
{
ra_empty_valid
:
valid
∅
;
ra_empty_l
:>
LeftId
(
≡
)
∅
(
⋅
)
}
.
}
.
(** Updates *)
(** Updates *)
...
@@ -72,7 +76,7 @@ Proof. by rewrite (commutative _ x), ra_unit_l. Qed.
...
@@ -72,7 +76,7 @@ Proof. by rewrite (commutative _ x), ra_unit_l. Qed.
(** ** Order *)
(** ** Order *)
Lemma
ra_included_spec
x
y
:
x
≼
y
↔
∃
z
,
y
≡
x
⋅
z
.
Lemma
ra_included_spec
x
y
:
x
≼
y
↔
∃
z
,
y
≡
x
⋅
z
.
Proof
.
Proof
.
split
;
[
by
exists
(
y
⩪
x
);
rewrite
ra_op_
difference
|]
.
split
;
[
by
exists
(
y
⩪
x
);
rewrite
ra_op_
minus
|]
.
intros
[
z
Hz
];
rewrite
Hz
;
apply
ra_included_l
.
intros
[
z
Hz
];
rewrite
Hz
;
apply
ra_included_l
.
Qed
.
Qed
.
Global
Instance
ra_included_proper'
:
Proper
((
≡
)
==>
(
≡
)
==>
iff
)
(
≼
)
.
Global
Instance
ra_included_proper'
:
Proper
((
≡
)
==>
(
≡
)
==>
iff
)
(
≼
)
.
...
@@ -106,4 +110,14 @@ Qed.
...
@@ -106,4 +110,14 @@ Qed.
(** ** Properties of [(⇝)] relation *)
(** ** Properties of [(⇝)] relation *)
Global
Instance
ra_update_preorder
:
PreOrder
ra_update
.
Global
Instance
ra_update_preorder
:
PreOrder
ra_update
.
Proof
.
split
.
by
intros
x
y
.
intros
x
y
y'
??
z
?;
naive_solver
.
Qed
.
Proof
.
split
.
by
intros
x
y
.
intros
x
y
y'
??
z
?;
naive_solver
.
Qed
.
(** ** RAs with empty element *)
Context
`{
Empty
A
,
!
RAEmpty
A
}
.
Global
Instance
ra_empty_r
:
RightId
(
≡
)
∅
(
⋅
)
.
Proof
.
by
intros
x
;
rewrite
(
commutative
op
),
(
left_id
_
_)
.
Qed
.
Lemma
ra_unit_empty
x
:
unit
∅
≡
∅.
Proof
.
by
rewrite
<-
(
ra_unit_l
∅
)
at
2
;
rewrite
(
right_id
_
_)
.
Qed
.
Lemma
ra_empty_least
x
:
∅
≼
x
.
Proof
.
by
rewrite
ra_included_spec
;
exists
x
;
rewrite
(
left_id
_
_)
.
Qed
.
End
ra
.
End
ra
.
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment