Skip to content
Snippets Groups Projects
Commit 3a6d86f4 authored by Jonas Kastberg's avatar Jonas Kastberg Committed by Robbert Krebbers
Browse files

Adding a constructor for reflexive transitive closures into bi's

parent 22d31260
No related branches found
No related tags found
No related merge requests found
...@@ -63,6 +63,8 @@ Coq development, but not every API-breaking change is listed. Changes marked ...@@ -63,6 +63,8 @@ Coq development, but not every API-breaking change is listed. Changes marked
To make this work we also had to rename `inv_acc` -> `inv_alter`. To make this work we also had to rename `inv_acc` -> `inv_alter`.
(Most developments should be unaffected as the typical way to invoke these (Most developments should be unaffected as the typical way to invoke these
lemmas is through `iInv`, and that does not change.) lemmas is through `iInv`, and that does not change.)
* Added a construction `bi_rtc` to create reflexive transitive closures of
PROP-level binary relations.
## Iris 3.2.0 (released 2019-08-29) ## Iris 3.2.0 (released 2019-08-29)
......
...@@ -63,6 +63,7 @@ theories/bi/lib/fractional.v ...@@ -63,6 +63,7 @@ theories/bi/lib/fractional.v
theories/bi/lib/laterable.v theories/bi/lib/laterable.v
theories/bi/lib/atomic.v theories/bi/lib/atomic.v
theories/bi/lib/core.v theories/bi/lib/core.v
theories/bi/lib/relations.v
theories/base_logic/upred.v theories/base_logic/upred.v
theories/base_logic/bi.v theories/base_logic/bi.v
theories/base_logic/derived.v theories/base_logic/derived.v
......
(** This file provides a construction to lift a PROP-level binary relation to
its reflexive transitive closure. *)
From iris.bi.lib Require Export fixpoint.
From iris.proofmode Require Import tactics.
Definition bi_rtc_pre
{PROP : sbi} {A : ofeT} (R : A A PROP)
(x2 : A) (rec : A PROP) (x1 : A) : PROP :=
(<affine> (x1 x2) x', R x1 x' rec x')%I.
Instance bi_rtc_pre_mono
{PROP : sbi} {A : ofeT} (R : A A PROP) `{NonExpansive2 R} (x : A) :
BiMonoPred (bi_rtc_pre R x).
Proof.
constructor; [|solve_proper].
iIntros (rec1 rec2) "#H". iIntros (x1) "[Hrec | Hrec]".
{ by iLeft. }
iRight.
iDestruct "Hrec" as (x') "[HP Hrec]".
iDestruct ("H" with "Hrec") as "Hrec". eauto with iFrame.
Qed.
Definition bi_rtc {PROP : sbi} {A : ofeT} (R : A A PROP)
(x1 x2 : A) : PROP :=
bi_least_fixpoint (bi_rtc_pre R x2) x1.
Instance: Params (@bi_rtc) 3 := {}.
Typeclasses Opaque bi_rtc.
Instance bi_rtc_ne
{PROP : sbi} {A : ofeT} (R : A A PROP)
: NonExpansive2 (bi_rtc R).
Proof.
intros n x1 x2 Hx y1 y2 Hy. rewrite /bi_rtc Hx. f_equiv=> rec z.
solve_proper.
Qed.
Instance bi_rtc_proper
{PROP : sbi} {A : ofeT} (R : A A PROP)
: Proper (() ==> () ==> (⊣⊢)) (bi_rtc R).
Proof. apply ne_proper_2. apply _. Qed.
Section bi_rtc.
Context {PROP : sbi}.
Context {A : ofeT}.
Context (R : A A PROP) `{NonExpansive2 R}.
Lemma bi_rtc_unfold (x1 x2 : A) :
bi_rtc R x1 x2 bi_rtc_pre R x2 (λ x1, bi_rtc R x1 x2) x1.
Proof. by rewrite /bi_rtc; rewrite -least_fixpoint_unfold. Qed.
Lemma bi_rtc_strong_ind_l x2 Φ :
NonExpansive Φ
( x1, <affine> (x1 x2) ( x', R x1 x' (Φ x' bi_rtc R x' x2)) -∗ Φ x1) -∗
x1, bi_rtc R x1 x2 -∗ Φ x1.
Proof.
iIntros (?) "#IH". rewrite /bi_rtc.
by iApply (least_fixpoint_strong_ind (bi_rtc_pre R x2) with "IH").
Qed.
Lemma bi_rtc_ind_l x2 Φ :
NonExpansive Φ
( x1, <affine> (x1 x2) ( x', R x1 x' Φ x') -∗ Φ x1) -∗
x1, bi_rtc R x1 x2 -∗ Φ x1.
Proof.
iIntros (?) "#IH". rewrite /bi_rtc.
by iApply (least_fixpoint_ind (bi_rtc_pre R x2) with "IH").
Qed.
Lemma bi_rtc_refl x : bi_rtc R x x.
Proof. rewrite bi_rtc_unfold. by iLeft. Qed.
Lemma bi_rtc_l x1 x2 x3 : R x1 x2 -∗ bi_rtc R x2 x3 -∗ bi_rtc R x1 x3.
Proof.
iIntros "H1 H2".
iEval (rewrite bi_rtc_unfold /bi_rtc_pre). iRight.
iExists x2. iFrame.
Qed.
Lemma bi_rtc_once x1 x2 : R x1 x2 -∗ bi_rtc R x1 x2.
Proof. iIntros "H". iApply (bi_rtc_l with "H"). iApply bi_rtc_refl. Qed.
Lemma bi_rtc_trans x1 x2 x3 : bi_rtc R x1 x2 -∗ bi_rtc R x2 x3 -∗ bi_rtc R x1 x3.
Proof.
iRevert (x1).
iApply bi_rtc_ind_l.
{ solve_proper. }
iIntros "!>" (x1) "[H | H] H2".
{ by iRewrite "H". }
iDestruct "H" as (x') "[H IH]".
iApply (bi_rtc_l with "H").
by iApply "IH".
Qed.
End bi_rtc.
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment