Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Model registry
Operate
Terraform modules
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Pierre Roux
Iris
Commits
2a7833d4
Commit
2a7833d4
authored
3 years ago
by
Dan Frumin
Browse files
Options
Downloads
Patches
Plain Diff
Add `big_sepM2_union_inv_l`.
parent
1b72a945
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
iris/bi/big_op.v
+54
-0
54 additions, 0 deletions
iris/bi/big_op.v
with
54 additions
and
0 deletions
iris/bi/big_op.v
+
54
−
0
View file @
2a7833d4
...
@@ -1926,6 +1926,60 @@ Section map2.
...
@@ -1926,6 +1926,60 @@ Section map2.
[
∗
map
]
k
↦
y1
;
y2
∈
m1
;
m2
,
Φ1
k
y1
∗
Φ2
k
y2
.
[
∗
map
]
k
↦
y1
;
y2
∈
m1
;
m2
,
Φ1
k
y1
∗
Φ2
k
y2
.
Proof
.
intros
.
apply
wand_intro_r
.
by
rewrite
big_sepM2_sepM
.
Qed
.
Proof
.
intros
.
apply
wand_intro_r
.
by
rewrite
big_sepM2_sepM
.
Qed
.
Lemma
big_sepM2_union_inv_l
(
Φ
:
K
→
A
→
B
→
PROP
)
(
m1
m2
:
gmap
K
A
)
(
n
:
gmap
K
B
):
m1
##
ₘ
m2
→
([
∗
map
]
k
↦
x
;
y
∈
(
m1
∪
m2
);
n
,
Φ
k
x
y
)
⊢
∃
n1
n2
,
⌜
n
=
n1
∪
n2
⌝
∧
([
∗
map
]
k
↦
x
;
y
∈
m1
;
n1
,
Φ
k
x
y
)
∗
([
∗
map
]
k
↦
x
;
y
∈
m2
;
n2
,
Φ
k
x
y
)
.
Proof
.
pose
(
P
:=
λ
m1
,
∀
(
m2
:
gmap
K
A
)
(
n
:
gmap
K
B
),
m1
##
ₘ
m2
→
([
∗
map
]
k
↦
x
;
y
∈
(
m1
∪
m2
);
n
,
Φ
k
x
y
)
-∗
∃
n1
n2
:
gmap
K
B
,
⌜
n
=
n1
∪
n2
⌝
∧
([
∗
map
]
k
↦
x
;
y
∈
m1
;
n1
,
Φ
k
x
y
)
∗
([
∗
map
]
k
↦
x
;
y
∈
m2
;
n2
,
Φ
k
x
y
))
.
revert
m1
m2
n
.
eapply
(
map_ind
P
);
unfold
P
;
clear
P
.
{
intros
m2
n
?
.
rewrite
left_id
.
rewrite
-
(
exist_intro
∅
)
-
(
exist_intro
n
)
left_id
pure_True
//
left_id
.
rewrite
big_sepM2_empty
left_id
//.
}
intros
i
x
m1
Hm1
IH
m2
n
[
Hm2i
Hmm
]
%
map_disjoint_insert_l
.
eapply
(
pure_elim
(
dom
(
gset
K
)
n
=
{[
i
]}
∪
dom
(
gset
K
)
m1
∪
dom
(
gset
K
)
m2
))
.
{
rewrite
big_sepM2_dom
dom_union_L
dom_insert_L
.
eapply
pure_mono
.
naive_solver
.
}
intros
Hdomn
.
destruct
(
n
!!
i
)
as
[
y
|]
eqn
:
Hni
;
last
first
.
{
exfalso
.
eapply
(
not_elem_of_dom
n
i
);
eauto
;
set_solver
.
}
assert
(
n
=
<
[
i
:=
y
]
>
(
delete
i
n
))
as
->
.
{
by
rewrite
insert_delete
insert_id
//.
}
assert
((
m1
∪
m2
)
!!
i
=
None
)
as
Hm1m2i
.
{
eapply
lookup_union_None
;
naive_solver
.
}
assert
(
delete
i
n
!!
i
=
None
)
by
eapply
lookup_delete
.
rewrite
-
insert_union_l
big_sepM2_insert
//.
rewrite
(
IH
m2
(
delete
i
n
))
//.
rewrite
sep_exist_l
.
eapply
exist_elim
=>
n1
.
rewrite
sep_exist_l
.
eapply
exist_elim
=>
n2
.
rewrite
comm
.
eapply
wand_elim_l'
.
eapply
pure_elim_l
=>
Hn1n2
.
rewrite
-
(
exist_intro
(
<
[
i
:=
y
]
>
n1
))
-
(
exist_intro
n2
)
.
rewrite
pure_True
;
last
first
.
{
rewrite
Hn1n2
.
by
rewrite
insert_union_l
.
}
eapply
(
pure_elim
(
n1
!!
i
=
None
))
.
{
rewrite
big_sepM2_dom
.
rewrite
sep_elim_l
.
eapply
pure_mono
.
intros
Hfoo
.
eapply
not_elem_of_dom
.
rewrite
-
Hfoo
.
by
eapply
not_elem_of_dom
.
}
intros
Hn1
.
rewrite
big_sepM2_insert
//
left_id
.
eapply
wand_intro_l
.
by
rewrite
assoc
.
Qed
.
Global
Instance
big_sepM2_empty_persistent
Φ
:
Global
Instance
big_sepM2_empty_persistent
Φ
:
Persistent
([
∗
map
]
k
↦
y1
;
y2
∈
∅
;
∅
,
Φ
k
y1
y2
)
.
Persistent
([
∗
map
]
k
↦
y1
;
y2
∈
∅
;
∅
,
Φ
k
y1
y2
)
.
Proof
.
rewrite
big_sepM2_empty
.
apply
_
.
Qed
.
Proof
.
rewrite
big_sepM2_empty
.
apply
_
.
Qed
.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment