Skip to content
Snippets Groups Projects
Commit 1e241cca authored by Robbert Krebbers's avatar Robbert Krebbers
Browse files

Make IntoLaterN work on ▷ ?P with ?P an evar.

Also, make the setup of IntoLaterN more consistent with that of WandWeaken.
Maybe, we should do something similar for other proof mode classes too.
parent cd98d13e
No related branches found
No related tags found
No related merge requests found
......@@ -135,109 +135,83 @@ Global Instance into_persistentP_persistent P :
Proof. done. Qed.
(* IntoLater *)
(* The class [IntoLaterN] has only two instances:
- The default instance [IntoLaterN n P P], i.e. [▷^n P -∗ P]
- The instance [ProgIntoLaterN n P Q → IntoLaterN n P Q], where [ProgIntoLaterN]
is identical to [IntoLaterN], but computationally is supposed to make
progress, i.e. its instances should actually strip a later.
The point of using the auxilary class [ProgIntoLaterN] is to ensure that the
default instance is not applied deeply in the term, which may cause in too many
definitions being unfolded (see issue #55).
For binary connectives we have the following instances:
<<
ProgIntoLaterN n P P' IntoLaterN n Q Q'
---------------------------------------------
ProgIntoLaterN n (P /\ Q) (P' /\ Q')
ProgIntoLaterN n Q Q'
--------------------------------
IntoLaterN n (P /\ Q) (P /\ Q')
>>
That is, to make progress, a later _should_ be stripped on either the left- or
right-hand side of the binary connective. *)
Class ProgIntoLaterN (n : nat) (P Q : uPred M) :=
prog_into_laterN : P ▷^n Q.
Global Arguments prog_into_laterN _ _ _ {_}.
Global Instance into_laterN_default n P : IntoLaterN n P P | 1000.
Proof. apply laterN_intro. Qed.
Global Instance into_laterN_progress P Q :
ProgIntoLaterN n P Q IntoLaterN n P Q.
IntoLaterN' n P Q IntoLaterN n P Q.
Proof. done. Qed.
Global Instance into_laterN_later n P Q :
IntoLaterN n P Q ProgIntoLaterN (S n) ( P) Q.
Proof. by rewrite /IntoLaterN /ProgIntoLaterN=>->. Qed.
Global Instance into_laterN_laterN n P : ProgIntoLaterN n (▷^n P) P.
IntoLaterN n P Q IntoLaterN' (S n) ( P) Q.
Proof. by rewrite /IntoLaterN' /IntoLaterN =>->. Qed.
Global Instance into_laterN_laterN n P : IntoLaterN' n (▷^n P) P.
Proof. done. Qed.
Global Instance into_laterN_laterN_plus n m P Q :
IntoLaterN m P Q ProgIntoLaterN (n + m) (▷^n P) Q.
Proof. rewrite /IntoLaterN /ProgIntoLaterN=>->. by rewrite laterN_plus. Qed.
IntoLaterN m P Q IntoLaterN' (n + m) (▷^n P) Q.
Proof. rewrite /IntoLaterN' /IntoLaterN=>->. by rewrite laterN_plus. Qed.
Global Instance into_laterN_and_l n P1 P2 Q1 Q2 :
ProgIntoLaterN n P1 Q1 IntoLaterN n P2 Q2
IntoLaterN' n P1 Q1 IntoLaterN n P2 Q2
IntoLaterN n (P1 P2) (Q1 Q2).
Proof. rewrite /ProgIntoLaterN /IntoLaterN=> -> ->. by rewrite laterN_and. Qed.
Proof. rewrite /IntoLaterN' /IntoLaterN=> -> ->. by rewrite laterN_and. Qed.
Global Instance into_laterN_and_r n P P2 Q2 :
ProgIntoLaterN n P2 Q2 ProgIntoLaterN n (P P2) (P Q2).
IntoLaterN' n P2 Q2 IntoLaterN' n (P P2) (P Q2).
Proof.
rewrite /ProgIntoLaterN=> ->. by rewrite laterN_and -(laterN_intro _ P).
Qed.
rewrite /IntoLaterN' /IntoLaterN=> ->. by rewrite laterN_and -(laterN_intro _ P).
Qed.
Global Instance into_laterN_or_l n P1 P2 Q1 Q2 :
ProgIntoLaterN n P1 Q1 IntoLaterN n P2 Q2
IntoLaterN' n P1 Q1 IntoLaterN n P2 Q2
IntoLaterN n (P1 P2) (Q1 Q2).
Proof. rewrite /ProgIntoLaterN /IntoLaterN=> -> ->. by rewrite laterN_or. Qed.
Proof. rewrite /IntoLaterN' /IntoLaterN=> -> ->. by rewrite laterN_or. Qed.
Global Instance into_laterN_or_r n P P2 Q2 :
ProgIntoLaterN n P2 Q2
ProgIntoLaterN n (P P2) (P Q2).
IntoLaterN' n P2 Q2
IntoLaterN' n (P P2) (P Q2).
Proof.
rewrite /ProgIntoLaterN=> ->. by rewrite laterN_or -(laterN_intro _ P).
rewrite /IntoLaterN' /IntoLaterN=> ->. by rewrite laterN_or -(laterN_intro _ P).
Qed.
Global Instance into_laterN_sep_l n P1 P2 Q1 Q2 :
ProgIntoLaterN n P1 Q1 IntoLaterN n P2 Q2
IntoLaterN' n P1 Q1 IntoLaterN n P2 Q2
IntoLaterN n (P1 P2) (Q1 Q2).
Proof. intros ??; red. by rewrite laterN_sep; apply sep_mono. Qed.
Global Instance into_laterN_sep_r n P P2 Q2 :
ProgIntoLaterN n P2 Q2
ProgIntoLaterN n (P P2) (P Q2).
IntoLaterN' n P2 Q2
IntoLaterN' n (P P2) (P Q2).
Proof.
rewrite /ProgIntoLaterN=> ->. by rewrite laterN_sep -(laterN_intro _ P).
rewrite /IntoLaterN' /IntoLaterN=> ->. by rewrite laterN_sep -(laterN_intro _ P).
Qed.
Global Instance into_laterN_big_sepL n {A} (Φ Ψ : nat A uPred M) (l: list A) :
( x k, ProgIntoLaterN n (Φ k x) (Ψ k x))
ProgIntoLaterN n ([ list] k x l, Φ k x) ([ list] k x l, Ψ k x).
( x k, IntoLaterN' n (Φ k x) (Ψ k x))
IntoLaterN' n ([ list] k x l, Φ k x) ([ list] k x l, Ψ k x).
Proof.
rewrite /ProgIntoLaterN=> ?. rewrite big_sepL_laterN. by apply big_sepL_mono.
rewrite /IntoLaterN' /IntoLaterN=> ?.
rewrite big_sepL_laterN. by apply big_sepL_mono.
Qed.
Global Instance into_laterN_big_sepM n `{Countable K} {A}
(Φ Ψ : K A uPred M) (m : gmap K A) :
( x k, ProgIntoLaterN n (Φ k x) (Ψ k x))
ProgIntoLaterN n ([ map] k x m, Φ k x) ([ map] k x m, Ψ k x).
( x k, IntoLaterN' n (Φ k x) (Ψ k x))
IntoLaterN' n ([ map] k x m, Φ k x) ([ map] k x m, Ψ k x).
Proof.
rewrite /ProgIntoLaterN=> ?. rewrite big_sepM_laterN; by apply big_sepM_mono.
rewrite /IntoLaterN' /IntoLaterN=> ?.
rewrite big_sepM_laterN; by apply big_sepM_mono.
Qed.
Global Instance into_laterN_big_sepS n `{Countable A}
(Φ Ψ : A uPred M) (X : gset A) :
( x, ProgIntoLaterN n (Φ x) (Ψ x))
ProgIntoLaterN n ([ set] x X, Φ x) ([ set] x X, Ψ x).
( x, IntoLaterN' n (Φ x) (Ψ x))
IntoLaterN' n ([ set] x X, Φ x) ([ set] x X, Ψ x).
Proof.
rewrite /ProgIntoLaterN=> ?. rewrite big_sepS_laterN; by apply big_sepS_mono.
rewrite /IntoLaterN' /IntoLaterN=> ?.
rewrite big_sepS_laterN; by apply big_sepS_mono.
Qed.
Global Instance into_laterN_big_sepMS n `{Countable A}
(Φ Ψ : A uPred M) (X : gmultiset A) :
( x, ProgIntoLaterN n (Φ x) (Ψ x))
ProgIntoLaterN n ([ mset] x X, Φ x) ([ mset] x X, Ψ x).
( x, IntoLaterN' n (Φ x) (Ψ x))
IntoLaterN' n ([ mset] x X, Φ x) ([ mset] x X, Ψ x).
Proof.
rewrite /ProgIntoLaterN=> ?. rewrite big_sepMS_laterN; by apply big_sepMS_mono.
rewrite /IntoLaterN' /IntoLaterN=> ?.
rewrite big_sepMS_laterN; by apply big_sepMS_mono.
Qed.
(* FromLater *)
......@@ -717,4 +691,4 @@ Proof.
Qed.
End classes.
Hint Mode ProgIntoLaterN + - ! - : typeclass_instances.
Hint Mode IntoLaterN' + - ! - : typeclass_instances.
......@@ -21,9 +21,41 @@ Class IntoPersistentP {M} (P Q : uPred M) := into_persistentP : P ⊢ □ Q.
Arguments into_persistentP {_} _ _ {_}.
Hint Mode IntoPersistentP + ! - : typeclass_instances.
(* The class [IntoLaterN] has only two instances:
- The default instance [IntoLaterN n P P], i.e. [▷^n P -∗ P]
- The instance [IntoLaterN' n P Q → IntoLaterN n P Q], where [IntoLaterN']
is identical to [IntoLaterN], but computationally is supposed to make
progress, i.e. its instances should actually strip a later.
The point of using the auxilary class [IntoLaterN'] is to ensure that the
default instance is not applied deeply in the term, which may cause in too many
definitions being unfolded (see issue #55).
For binary connectives we have the following instances:
<<
ProgIntoLaterN n P P' IntoLaterN n Q Q'
---------------------------------------------
ProgIntoLaterN n (P /\ Q) (P' /\ Q')
ProgIntoLaterN n Q Q'
--------------------------------
IntoLaterN n (P /\ Q) (P /\ Q')
>>
*)
Class IntoLaterN {M} (n : nat) (P Q : uPred M) := into_laterN : P ▷^n Q.
Arguments into_laterN {_} _ _ _ {_}.
Hint Mode IntoLaterN + - ! - : typeclass_instances.
Hint Mode IntoLaterN + - - - : typeclass_instances.
Class IntoLaterN' {M} (n : nat) (P Q : uPred M) :=
into_laterN' :> IntoLaterN n P Q.
Arguments into_laterN' {_} _ _ _ {_}.
Hint Mode IntoLaterN' + - ! - : typeclass_instances.
Instance into_laterN_default {M} n (P : uPred M) : IntoLaterN n P P | 1000.
Proof. apply laterN_intro. Qed.
Class FromLaterN {M} (n : nat) (P Q : uPred M) := from_laterN : ▷^n Q P.
Arguments from_laterN {_} _ _ _ {_}.
......@@ -36,6 +68,8 @@ Class WandWeaken' {M} (P Q P' Q' : uPred M) :=
wand_weaken' :> WandWeaken P Q P' Q'.
Hint Mode WandWeaken' + - - ! - : typeclass_instances.
Hint Mode WandWeaken' + - - - ! : typeclass_instances.
Instance wand_weaken_exact {M} (P Q : uPred M) : WandWeaken P Q P Q | 1000.
Proof. done. Qed.
Class IntoWand {M} (R P Q : uPred M) := into_wand : R P -∗ Q.
Arguments into_wand {_} _ _ _ {_}.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment