Skip to content
Snippets Groups Projects
Verified Commit 1b820fbf authored by Paolo G. Giarrusso's avatar Paolo G. Giarrusso
Browse files

Fix entailment notations `(⊢@{PROP})` and `(⊣⊢@{PROP} )` etc.

Fix #302, including their ASCII variants.
- Don't use quotes `'` that are not surrounded by spaces.
- However, notation `'(⊢@{' PROP } )` prevents parsing `(⊢@{PROP} Q)` using the
`⊢@{PROP} Q` notation.

To fix that, we force left-factorization: we add a notation for `'(⊢@{' PROP }
Q )`, defined to coincide with '⊢@{' PROP } Q but which can be left-factored
with `( '⊢@{' PROP } )`.

- Add left and right operator sections for (bi)entailment
- Add tests.

Also do all of the above also for ASCII notations, except for operator sections,
which seem to require more discussion.
parent a881b6b9
No related branches found
No related tags found
No related merge requests found
...@@ -5,10 +5,6 @@ Section tests. ...@@ -5,10 +5,6 @@ Section tests.
Context {PROP : sbi}. Context {PROP : sbi}.
Implicit Types P Q R : PROP. Implicit Types P Q R : PROP.
Lemma test_sbi_internal_eq_annot_sections P :
⊢@{PROP} P ≡@{PROP} P (≡@{PROP}) P P (P .) P (. P) P.
Proof. by iSplit. Qed.
Lemma test_eauto_emp_isplit_biwand P : emp P ∗-∗ P. Lemma test_eauto_emp_isplit_biwand P : emp P ∗-∗ P.
Proof. eauto 6. Qed. Proof. eauto 6. Qed.
...@@ -825,7 +821,54 @@ Proof. ...@@ -825,7 +821,54 @@ Proof.
Qed. Qed.
End tests. End tests.
(** Test specifically if certain things print correctly. *) Section parsing_tests.
Context {PROP : sbi}.
Implicit Types P : PROP.
(** Test notations for (bi)entailment and internal equality. These tests are
especially extensive because of past problems such as
https://gitlab.mpi-sws.org/iris/iris/-/issues/302. *)
Lemma test_bi_emp_valid : ⊢@{PROP} True.
Proof. naive_solver. Qed.
Lemma test_bi_emp_valid_parens : (⊢@{PROP} True) ((⊢@{PROP} True)).
Proof. naive_solver. Qed.
Lemma test_bi_emp_valid_parens_space_open : ( ⊢@{PROP} True).
Proof. naive_solver. Qed.
Lemma test_bi_emp_valid_parens_space_close : (⊢@{PROP} True ).
Proof. naive_solver. Qed.
Lemma test_entails_annot_sections P :
(P ⊢@{PROP} P) (⊢@{PROP}) P P (P .) P (. P) P
(P ⊣⊢@{PROP} P) (⊣⊢@{PROP}) P P (P ⊣⊢.) P (.⊣⊢ P) P.
Proof. naive_solver. Qed.
Lemma test_entails_annot_sections_parens P :
((P ⊢@{PROP} P)) ((⊢@{PROP})) P P ((P .)) P ((. P)) P
((P ⊣⊢@{PROP} P)) ((⊣⊢@{PROP})) P P ((P ⊣⊢.)) P ((.⊣⊢ P)) P.
Proof. naive_solver. Qed.
Lemma test_entails_annot_sections_space_open P :
( P ⊢@{PROP} P) ( P .) P
( P ⊣⊢@{PROP} P) ( P ⊣⊢.) P.
Proof. naive_solver. Qed.
Lemma test_entails_annot_sections_space_close P :
(P ⊢@{PROP} P ) (⊢@{PROP} ) P P (. P ) P
(P ⊣⊢@{PROP} P ) (⊣⊢@{PROP} ) P P (.⊣⊢ P ) P.
Proof. naive_solver. Qed.
Lemma test_sbi_internal_eq_annot_sections P :
⊢@{PROP}
P ≡@{PROP} P (≡@{PROP}) P P (P .) P (. P) P
((P ≡@{PROP} P)) ((≡@{PROP})) P P ((P .)) P ((. P)) P
( P ≡@{PROP} P) ( P .) P
(P ≡@{PROP} P ) (≡@{PROP} ) P P (. P ) P.
Proof. naive_solver. Qed.
End parsing_tests.
Section printing_tests. Section printing_tests.
Context {PROP : sbi} `{!BiFUpd PROP}. Context {PROP : sbi} `{!BiFUpd PROP}.
Implicit Types P Q R : PROP. Implicit Types P Q R : PROP.
......
...@@ -258,3 +258,41 @@ Section monpred_tests. ...@@ -258,3 +258,41 @@ Section monpred_tests.
Qed. Qed.
End monpred_tests. End monpred_tests.
(** Test specifically if certain things parse correctly. *)
Section parsing_tests.
Context {PROP : sbi}.
Implicit Types P : PROP.
Lemma test_bi_emp_valid : |--@{PROP} True.
Proof. naive_solver. Qed.
Lemma test_bi_emp_valid_parens : (|--@{PROP} True) /\ ((|--@{PROP} True)).
Proof. naive_solver. Qed.
Lemma test_bi_emp_valid_parens_space_open : ( |--@{PROP} True).
Proof. naive_solver. Qed.
Lemma test_bi_emp_valid_parens_space_close : (|--@{PROP} True ).
Proof. naive_solver. Qed.
Lemma test_entails_annot_sections P :
(P |--@{PROP} P) /\ (|--@{PROP}) P P /\
(P -|-@{PROP} P) /\ (-|-@{PROP}) P P.
Proof. naive_solver. Qed.
Lemma test_entails_annot_sections_parens P :
((P |--@{PROP} P)) /\ ((|--@{PROP})) P P /\
((P -|-@{PROP} P)) /\ ((-|-@{PROP})) P P.
Proof. naive_solver. Qed.
Lemma test_entails_annot_sections_space_open P :
( P |--@{PROP} P) /\
( P -|-@{PROP} P).
Proof. naive_solver. Qed.
Lemma test_entails_annot_sections_space_close P :
(P |--@{PROP} P ) /\ (|--@{PROP} ) P P /\
(P -|-@{PROP} P ) /\ (-|-@{PROP} ) P P.
Proof. naive_solver. Qed.
End parsing_tests.
...@@ -8,17 +8,17 @@ Notation "P |-- Q" := (P ⊢ Q) ...@@ -8,17 +8,17 @@ Notation "P |-- Q" := (P ⊢ Q)
(at level 99, Q at level 200, right associativity, only parsing) : stdpp_scope. (at level 99, Q at level 200, right associativity, only parsing) : stdpp_scope.
Notation "P '|--@{' PROP } Q" := (P ⊢@{PROP} Q) (at level 99, Q at level 200, right associativity, only parsing) : stdpp_scope. Notation "P '|--@{' PROP } Q" := (P ⊢@{PROP} Q) (at level 99, Q at level 200, right associativity, only parsing) : stdpp_scope.
Notation "(|--)" := () (only parsing) : stdpp_scope. Notation "(|--)" := () (only parsing) : stdpp_scope.
(* FIXME: fix notation *) Notation "'(|--@{' PROP } )" := (⊢@{PROP}) (only parsing) : stdpp_scope.
Notation "('|--@{' PROP } )" := (bi_entails (PROP:=PROP)) (only parsing) : stdpp_scope.
Notation "|-- Q" := ( Q%I) (at level 20, Q at level 200, only parsing) : stdpp_scope. Notation "|-- Q" := ( Q%I) (at level 20, Q at level 200, only parsing) : stdpp_scope.
Notation "'|--@{' PROP } Q" := (⊢@{PROP} Q) (at level 20, Q at level 200, only parsing) : stdpp_scope. Notation "'|--@{' PROP } Q" := (⊢@{PROP} Q) (at level 20, Q at level 200, only parsing) : stdpp_scope.
(** Work around parsing issues: see [notation.v] for details. *)
Notation "'(|--@{' PROP } Q )" := (⊢@{PROP} Q) (only parsing) : stdpp_scope.
Notation "P -|- Q" := (P ⊣⊢ Q) (at level 95, no associativity, only parsing) : stdpp_scope. Notation "P -|- Q" := (P ⊣⊢ Q) (at level 95, no associativity, only parsing) : stdpp_scope.
Notation "P '-|-@{' PROP } Q" := (P ⊣⊢@{PROP} Q) (at level 95, no associativity, only parsing) : stdpp_scope. Notation "P '-|-@{' PROP } Q" := (P ⊣⊢@{PROP} Q) (at level 95, no associativity, only parsing) : stdpp_scope.
Notation "(-|-)" := (⊣⊢) (only parsing) : stdpp_scope. Notation "(-|-)" := (⊣⊢) (only parsing) : stdpp_scope.
(* FIXME: fix notation *) Notation "'(-|-@{' PROP } )" := (⊣⊢@{PROP}) (only parsing) : stdpp_scope.
Notation "('-|-@{' PROP } )" := (equiv (A:=bi_car PROP)) (only parsing) : stdpp_scope.
Notation "P -* Q" := (P Q)%stdpp (at level 99, Q at level 200, right associativity, only parsing) : stdpp_scope. Notation "P -* Q" := (P Q)%stdpp (at level 99, Q at level 200, right associativity, only parsing) : stdpp_scope.
......
...@@ -262,12 +262,14 @@ Instance bi_inhabited {PROP : bi} : Inhabited PROP := populate (bi_pure True). ...@@ -262,12 +262,14 @@ Instance bi_inhabited {PROP : bi} : Inhabited PROP := populate (bi_pure True).
Notation "P ⊢ Q" := (bi_entails P%I Q%I) : stdpp_scope. Notation "P ⊢ Q" := (bi_entails P%I Q%I) : stdpp_scope.
Notation "P '⊢@{' PROP } Q" := (bi_entails (PROP:=PROP) P%I Q%I) (only parsing) : stdpp_scope. Notation "P '⊢@{' PROP } Q" := (bi_entails (PROP:=PROP) P%I Q%I) (only parsing) : stdpp_scope.
Notation "(⊢)" := bi_entails (only parsing) : stdpp_scope. Notation "(⊢)" := bi_entails (only parsing) : stdpp_scope.
Notation "('⊢@{' PROP } )" := (bi_entails (PROP:=PROP)) (only parsing) : stdpp_scope. Notation "'(⊢@{' PROP } )" := (bi_entails (PROP:=PROP)) (only parsing) : stdpp_scope.
Notation "P ⊣⊢ Q" := (equiv (A:=bi_car _) P%I Q%I) : stdpp_scope. Notation "P ⊣⊢ Q" := (equiv (A:=bi_car _) P%I Q%I) : stdpp_scope.
Notation "P '⊣⊢@{' PROP } Q" := (equiv (A:=bi_car PROP) P%I Q%I) (only parsing) : stdpp_scope. Notation "P '⊣⊢@{' PROP } Q" := (equiv (A:=bi_car PROP) P%I Q%I) (only parsing) : stdpp_scope.
Notation "(⊣⊢)" := (equiv (A:=bi_car _)) (only parsing) : stdpp_scope. Notation "(⊣⊢)" := (equiv (A:=bi_car _)) (only parsing) : stdpp_scope.
Notation "('⊣⊢@{' PROP } )" := (equiv (A:=bi_car PROP)) (only parsing) : stdpp_scope. Notation "'(⊣⊢@{' PROP } )" := (equiv (A:=bi_car PROP)) (only parsing) : stdpp_scope.
Notation "( P ⊣⊢.)" := (equiv (A:=bi_car _) P) (only parsing) : stdpp_scope.
Notation "(.⊣⊢ Q )" := (λ P, P ≡@{bi_car _} Q) (only parsing) : stdpp_scope.
Notation "P -∗ Q" := (P Q) : stdpp_scope. Notation "P -∗ Q" := (P Q) : stdpp_scope.
...@@ -305,6 +307,10 @@ Typeclasses Opaque bi_emp_valid. ...@@ -305,6 +307,10 @@ Typeclasses Opaque bi_emp_valid.
Notation "⊢ Q" := (bi_emp_valid Q%I) : stdpp_scope. Notation "⊢ Q" := (bi_emp_valid Q%I) : stdpp_scope.
Notation "'⊢@{' PROP } Q" := (bi_emp_valid (PROP:=PROP) Q%I) (only parsing) : stdpp_scope. Notation "'⊢@{' PROP } Q" := (bi_emp_valid (PROP:=PROP) Q%I) (only parsing) : stdpp_scope.
(** Work around parsing issues: see [notation.v] for details. *)
Notation "'(⊢@{' PROP } Q )" := (bi_emp_valid (PROP:=PROP) Q%I) (only parsing) : stdpp_scope.
Notation "(.⊢ Q )" := (λ P, P Q) (only parsing) : stdpp_scope.
Notation "( P ⊢.)" := (bi_entails P) (only parsing) : stdpp_scope.
Module bi. Module bi.
Section bi_laws. Section bi_laws.
......
...@@ -4,15 +4,31 @@ ...@@ -4,15 +4,31 @@
Reserved Notation "P ⊢ Q" (at level 99, Q at level 200, right associativity). Reserved Notation "P ⊢ Q" (at level 99, Q at level 200, right associativity).
Reserved Notation "P '⊢@{' PROP } Q" (at level 99, Q at level 200, right associativity). Reserved Notation "P '⊢@{' PROP } Q" (at level 99, Q at level 200, right associativity).
Reserved Notation "(⊢)". Reserved Notation "(⊢)".
Reserved Notation "('⊢@{' PROP } )". Reserved Notation "'(⊢@{' PROP } )".
Reserved Notation "( P ⊣⊢.)".
Reserved Notation "(.⊣⊢ Q )".
Reserved Notation "P ⊣⊢ Q" (at level 95, no associativity). Reserved Notation "P ⊣⊢ Q" (at level 95, no associativity).
Reserved Notation "P '⊣⊢@{' PROP } Q" (at level 95, no associativity). Reserved Notation "P '⊣⊢@{' PROP } Q" (at level 95, no associativity).
Reserved Notation "(⊣⊢)". Reserved Notation "(⊣⊢)".
Reserved Notation "('⊣⊢@{' PROP } )". Reserved Notation "'(⊣⊢@{' PROP } )".
Reserved Notation "(.⊢ Q )".
Reserved Notation "( P ⊢.)".
Reserved Notation "⊢ Q" (at level 20, Q at level 200). Reserved Notation "⊢ Q" (at level 20, Q at level 200).
Reserved Notation "'⊢@{' PROP } Q" (at level 20, Q at level 200). Reserved Notation "'⊢@{' PROP } Q" (at level 20, Q at level 200).
(** The definition must coincide with "'⊢@{' PROP } Q". *)
Reserved Notation "'(⊢@{' PROP } Q )".
(**
Rationale:
Notation [( '⊢@{' PROP } )] prevents parsing [(⊢@{PROP} Q)] using the
[⊢@{PROP} Q] notation; since the latter parse arises from composing two
notations, it is missed by the automatic left-factorization.
To fix that, we force left-factorization by explicitly composing parentheses with
['⊢@{' PROP } Q] into the new notation [( '⊢@{' PROP } Q )],
which successfully undergoes automatic left-factoring. *)
(** * BI connectives *) (** * BI connectives *)
Reserved Notation "'emp'". Reserved Notation "'emp'".
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment