Skip to content
Snippets Groups Projects
Commit 0dbc0a00 authored by Ralf Jung's avatar Ralf Jung
Browse files

remove a test that depends on the barrier

parent 53d0af97
No related branches found
No related tags found
No related merge requests found
...@@ -88,7 +88,6 @@ theories/proofmode/classes.v ...@@ -88,7 +88,6 @@ theories/proofmode/classes.v
theories/proofmode/class_instances.v theories/proofmode/class_instances.v
theories/tests/heap_lang.v theories/tests/heap_lang.v
theories/tests/one_shot.v theories/tests/one_shot.v
theories/tests/joining_existentials.v
theories/tests/proofmode.v theories/tests/proofmode.v
theories/tests/barrier_client.v theories/tests/barrier_client.v
theories/tests/list_reverse.v theories/tests/list_reverse.v
......
From iris.program_logic Require Export weakestpre hoare.
From iris.heap_lang Require Export lang.
From iris.algebra Require Import excl agree csum.
From iris.heap_lang.lib.barrier Require Import proof specification.
From iris.heap_lang Require Import notation par proofmode.
From iris.proofmode Require Import tactics.
Set Default Proof Using "Type".
Definition one_shotR (Σ : gFunctors) (F : cFunctor) :=
csumR (exclR unitC) (agreeR $ laterC $ F (iPreProp Σ)).
Definition Pending {Σ F} : one_shotR Σ F := Cinl (Excl ()).
Definition Shot {Σ} {F : cFunctor} (x : F (iProp Σ)) : one_shotR Σ F :=
Cinr $ to_agree $ Next $ cFunctor_map F (iProp_fold, iProp_unfold) x.
Class oneShotG (Σ : gFunctors) (F : cFunctor) :=
one_shot_inG :> inG Σ (one_shotR Σ F).
Definition oneShotΣ (F : cFunctor) : gFunctors :=
#[ GFunctor (csumRF (exclRF unitC) (agreeRF ( F))) ].
Instance subG_oneShotΣ {Σ F} : subG (oneShotΣ F) Σ oneShotG Σ F.
Proof. solve_inG. Qed.
Definition client eM eW1 eW2 : expr :=
let: "b" := newbarrier #() in
(eM ;; signal "b") ||| ((wait "b" ;; eW1) ||| (wait "b" ;; eW2)).
Section proof.
Local Set Default Proof Using "Type*".
Context `{!heapG Σ, !barrierG Σ, !spawnG Σ, !oneShotG Σ F}.
Context (N : namespace).
Local Notation X := (F (iProp Σ)).
Definition barrier_res γ (Φ : X iProp Σ) : iProp Σ :=
( x, own γ (Shot x) Φ x)%I.
Lemma worker_spec e γ l (Φ Ψ : X iProp Σ) `{!Closed [] e} :
recv N l (barrier_res γ Φ) -∗ ( x, {{ Φ x }} e {{ _, Ψ x }}) -∗
WP wait #l ;; e {{ _, barrier_res γ Ψ }}.
Proof.
iIntros "Hl #He". wp_apply (wait_spec with "[- $Hl]"); simpl.
iDestruct 1 as (x) "[#Hγ Hx]".
wp_seq. iApply (wp_wand with "[Hx]"); [by iApply "He"|].
iIntros (v) "?"; iExists x; by iSplit.
Qed.
Context (P : iProp Σ) (Φ Φ1 Φ2 Ψ Ψ1 Ψ2 : X -n> iProp Σ).
Context {Φ_split : x, Φ x -∗ (Φ1 x Φ2 x)}.
Context {Ψ_join : x, Ψ1 x -∗ Ψ2 x -∗ Ψ x}.
Lemma P_res_split γ : barrier_res γ Φ -∗ barrier_res γ Φ1 barrier_res γ Φ2.
Proof.
iDestruct 1 as (x) "[#Hγ Hx]".
iDestruct (Φ_split with "Hx") as "[H1 H2]". by iSplitL "H1"; iExists x; iSplit.
Qed.
Lemma Q_res_join γ : barrier_res γ Ψ1 -∗ barrier_res γ Ψ2 -∗ barrier_res γ Ψ.
Proof.
iDestruct 1 as (x) "[#Hγ Hx]"; iDestruct 1 as (x') "[#Hγ' Hx']".
iAssert ( (x x'))%I as "Hxx".
{ iCombine "Hγ" "Hγ'" as "Hγ2". iClear "Hγ Hγ'".
rewrite own_valid csum_validI /= agree_validI agree_equivI uPred.later_equivI /=.
rewrite -{2}[x]cFunctor_id -{2}[x']cFunctor_id.
rewrite (ne_proper (cFunctor_map F) (cid, cid) (_ _, _ _)); last first.
{ by split; intro; simpl; symmetry; apply iProp_fold_unfold. }
rewrite !cFunctor_compose. iNext. by iRewrite "Hγ2". }
iNext. iRewrite -"Hxx" in "Hx'".
iExists x; iFrame "Hγ". iApply (Ψ_join with "Hx Hx'").
Qed.
Lemma client_spec_new eM eW1 eW2 `{!Closed [] eM, !Closed [] eW1, !Closed [] eW2} :
P -∗
{{ P }} eM {{ _, x, Φ x }} -∗
( x, {{ Φ1 x }} eW1 {{ _, Ψ1 x }}) -∗
( x, {{ Φ2 x }} eW2 {{ _, Ψ2 x }}) -∗
WP client eM eW1 eW2 {{ _, γ, barrier_res γ Ψ }}.
Proof using All.
iIntros "/= HP #He #He1 #He2"; rewrite /client.
iMod (own_alloc (Pending : one_shotR Σ F)) as (γ) "Hγ"; first done.
wp_apply (newbarrier_spec N (barrier_res γ Φ)); auto.
iIntros (l) "[Hr Hs]".
set (workers_post (v : val) := (barrier_res γ Ψ1 barrier_res γ Ψ2)%I).
wp_let. wp_apply (wp_par (λ _, True)%I workers_post with "[HP Hs Hγ] [Hr]").
- wp_bind eM. iApply (wp_wand with "[HP]"); [by iApply "He"|].
iIntros (v) "HP"; iDestruct "HP" as (x) "HP". wp_let.
iMod (own_update with "Hγ") as "Hx".
{ by apply (cmra_update_exclusive (Shot x)). }
iApply (signal_spec with "[- $Hs]"); last auto.
iExists x; auto.
- iDestruct (recv_weaken with "[] Hr") as "Hr"; first by iApply P_res_split.
iMod (recv_split with "Hr") as "[H1 H2]"; first done.
wp_apply (wp_par (λ _, barrier_res γ Ψ1)%I
(λ _, barrier_res γ Ψ2)%I with "[H1] [H2]").
+ iApply (worker_spec with "H1"); auto.
+ iApply (worker_spec with "H2"); auto.
+ auto.
- iIntros (_ v) "[_ [H1 H2]]". iDestruct (Q_res_join with "H1 H2") as "?". auto.
Qed.
End proof.
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment