Skip to content
Snippets Groups Projects
Commit 07ff13e0 authored by Ralf Jung's avatar Ralf Jung
Browse files

avoid using iAlways ourselves

parent 6ae02201
No related branches found
No related tags found
No related merge requests found
......@@ -501,7 +501,7 @@ Proof. iIntros "#HPQ HQ !>". iNext. by iRewrite "HPQ" in "HQ". Qed.
Lemma test_iAlways P Q R :
P -∗ <pers> Q R -∗ <pers> <affine> <affine> P Q.
Proof. iIntros "#HP #HQ HR". iSplitL. iAlways. done. iAlways. done. Qed.
Proof. iIntros "#HP #HQ HR". iSplitL. iModIntro. done. iModIntro. done. Qed.
(* A bunch of test cases from #127 to establish that tactics behave the same on
`⌜ φ ⌝ → P` and `∀ _ : φ, P` *)
......@@ -975,7 +975,7 @@ Proof. Fail iStopProof. Abort.
Check "iAlways_spatial_non_empty".
Lemma iAlways_spatial_non_empty P :
P -∗ emp.
Proof. iIntros "HP". Fail iAlways. Abort.
Proof. iIntros "HP". Fail iModIntro. Abort.
Check "iDestruct_bad_name".
Lemma iDestruct_bad_name P :
......
......@@ -71,23 +71,23 @@ Section tests.
Qed.
Lemma test_objectively P Q : <obj> emp -∗ <obj> P -∗ <obj> Q -∗ <obj> (P Q).
Proof. iIntros "#? HP HQ". iAlways. by iSplitL "HP". Qed.
Proof. iIntros "#? HP HQ". iModIntro. by iSplitL "HP". Qed.
Lemma test_objectively_absorbing P Q R `{!Absorbing P} :
<obj> emp -∗ <obj> P -∗ <obj> Q -∗ R -∗ <obj> (P Q).
Proof. iIntros "#? HP HQ HR". iAlways. by iSplitL "HP". Qed.
Proof. iIntros "#? HP HQ HR". iModIntro. by iSplitL "HP". Qed.
Lemma test_objectively_affine P Q R `{!Affine R} :
<obj> emp -∗ <obj> P -∗ <obj> Q -∗ R -∗ <obj> (P Q).
Proof. iIntros "#? HP HQ HR". iAlways. by iSplitL "HP". Qed.
Proof. iIntros "#? HP HQ HR". iModIntro. by iSplitL "HP". Qed.
Lemma test_iModIntro_embed P `{!Affine Q} 𝓟 𝓠 :
P -∗ Q -∗ 𝓟 -∗ 𝓠 -∗ 𝓟 𝓠 ⎤.
Proof. iIntros "#H1 _ H2 H3". iAlways. iFrame. Qed.
Proof. iIntros "#H1 _ H2 H3". iModIntro. iFrame. Qed.
Lemma test_iModIntro_embed_objective P `{!Objective Q} 𝓟 𝓠 :
P -∗ Q -∗ 𝓟 -∗ 𝓠 -∗ i, 𝓟 𝓠 Q i ⎤.
Proof. iIntros "#H1 H2 H3 H4". iAlways. Show. iFrame. Qed.
Proof. iIntros "#H1 H2 H3 H4". iModIntro. Show. iFrame. Qed.
Lemma test_iModIntro_embed_nested P 𝓟 𝓠 :
P -∗ ⎡◇ 𝓟 -∗ ⎡◇ 𝓠 -∗ (𝓟 𝓠) ⎤.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment