Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
Iris
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Model registry
Operate
Terraform modules
Monitor
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Pierre Roux
Iris
Commits
019314db
Commit
019314db
authored
5 years ago
by
Robbert Krebbers
Browse files
Options
Downloads
Patches
Plain Diff
Comment about the relation between `discrete_fun` and non-expansive functions.
parent
acbaddd8
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
theories/algebra/ofe.v
+6
-3
6 additions, 3 deletions
theories/algebra/ofe.v
with
6 additions
and
3 deletions
theories/algebra/ofe.v
+
6
−
3
View file @
019314db
...
@@ -1103,9 +1103,12 @@ Proof.
...
@@ -1103,9 +1103,12 @@ Proof.
destruct
n
as
[|
n
];
simpl
in
*
;
first
done
.
apply
oFunctor_ne
,
Hfg
.
destruct
n
as
[|
n
];
simpl
in
*
;
first
done
.
apply
oFunctor_ne
,
Hfg
.
Qed
.
Qed
.
(* Dependently-typed functions over a discrete domain *)
(** Dependently-typed functions over a discrete domain *)
(* We make [discrete_fun] a definition so that we can register it as a canonical
(** We make [discrete_fun] a definition so that we can register it as a
structure. *)
canonical structure. Note that non-dependent functions over a discrete domain,
[discrete_fun (λ _, A) B] (or [A -d> B] following the notation we introduce
below) are isomorphic to [leibnizC A -n> B]. In other words, since the domain
is discrete, we get non-expansiveness for free. *)
Definition
discrete_fun
{
A
}
(
B
:
A
→
ofeT
)
:=
∀
x
:
A
,
B
x
.
Definition
discrete_fun
{
A
}
(
B
:
A
→
ofeT
)
:=
∀
x
:
A
,
B
x
.
Section
discrete_fun
.
Section
discrete_fun
.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment