Forked from
Iris / Iris
7511 commits behind the upstream repository.
auth.v 3.00 KiB
Require Export algebra.auth algebra.functor.
Require Export program_logic.invariants program_logic.ghost_ownership.
Import uPred ghost_ownership.
Section auth.
Context {A : cmraT} `{Empty A, !CMRAIdentity A}.
Context {Λ : language} {Σ : gid → iFunctor} (AuthI : gid) `{!InG Λ Σ AuthI (authRA A)}.
(* TODO: Come up with notation for "iProp Λ (globalC Σ)". *)
Context (N : namespace) (φ : A → iProp Λ (globalC Σ)).
Implicit Types P Q R : iProp Λ (globalC Σ).
Implicit Types a b : A.
Implicit Types γ : gname.
(* TODO: Need this to be proven somewhere. *)
(* FIXME ✓ binds too strong, I need parenthesis here. *)
Hypothesis auth_valid :
forall a b, (✓(Auth (Excl a) b) : iProp Λ (globalC Σ)) ⊑ (∃ b', a ≡ b ⋅ b').
(* FIXME how much would break if we had a global instance from ∅ to Inhabited? *)
Local Instance auth_inhabited : Inhabited A.
Proof. split. exact ∅. Qed.
Definition auth_inv (γ : gname) : iProp Λ (globalC Σ) :=
(∃ a, own AuthI γ (●a) ★ φ a)%I.
Definition auth_own (γ : gname) (a : A) := own AuthI γ (◯a).
Definition auth_ctx (γ : gname) := inv N (auth_inv γ).
Lemma auth_alloc a :
✓a → φ a ⊑ pvs N N (∃ γ, auth_ctx γ ∧ auth_own γ a).
Proof.
intros Ha. rewrite -(right_id True%I (★)%I (φ _)).
rewrite (own_alloc AuthI (Auth (Excl a) a) N) //; [].
rewrite pvs_frame_l. apply pvs_strip_pvs.
rewrite sep_exist_l. apply exist_elim=>γ. rewrite -(exist_intro γ).
transitivity (▷auth_inv γ ★ auth_own γ a)%I.
{ rewrite /auth_inv -later_intro -(exist_intro a).
rewrite (commutative _ _ (φ _)) -associative. apply sep_mono; first done.
rewrite /auth_own -own_op auth_both_op. done. }
rewrite (inv_alloc N) /auth_ctx pvs_frame_r. apply pvs_mono.
by rewrite always_and_sep_l'.
Qed.
Context {Hφ : ∀ n, Proper (dist n ==> dist n) φ}.
Lemma auth_opened a γ :
(auth_inv γ ★ auth_own γ a) ⊑ (∃ a', φ (a ⋅ a') ★ own AuthI γ (● (a ⋅ a') ⋅ ◯ a)).
Proof.
rewrite /auth_inv. rewrite sep_exist_r. apply exist_elim=>b.
rewrite /auth_own [(_ ★ φ _)%I]commutative -associative -own_op.
rewrite own_valid_r auth_valid !sep_exist_l /=. apply exist_elim=>a'.
rewrite [∅ ⋅ _]left_id -(exist_intro a').
apply (eq_rewrite b (a ⋅ a')
(λ x, φ x ★ own AuthI γ (● x ⋅ ◯ a))%I).
{ (* TODO this asks for automation. *)
move=>n a1 a2 Ha. by rewrite !Ha. }
{ by rewrite !sep_elim_r. }
apply sep_mono; first done.
by rewrite sep_elim_l.
Qed.
Lemma auth_closing a a' b γ :
auth_step (a ⋅ a') a (b ⋅ a') b →
(φ (b ⋅ a') ★ own AuthI γ (● (a ⋅ a') ⋅ ◯ a))
⊑ pvs N N (auth_inv γ ★ auth_own γ b).
Proof.
intros Hstep. rewrite /auth_inv /auth_own -(exist_intro (b ⋅ a')).
rewrite [(_ ★ φ _)%I]commutative -associative.
rewrite -pvs_frame_l. apply sep_mono; first done.
rewrite -own_op. apply own_update.
by apply auth_update.
Qed.
End auth.