Newer
Older
From iris.proofmode Require Import coq_tactics reduction spec_patterns.
From iris.proofmode Require Export tactics.
From iris.program_logic Require Import atomic.
From iris.heap_lang Require Export tactics derived_laws.
From iris.heap_lang Require Import notation.
Lemma tac_wp_expr_eval `{!heapGS Σ} Δ s E Φ e e' :
(∀ (e'':=e'), e = e'') →
envs_entails Δ (WP e' @ s; E {{ Φ }}) → envs_entails Δ (WP e @ s; E {{ Φ }}).
Robbert Krebbers
committed
Proof. by intros ->. Qed.
Lemma tac_twp_expr_eval `{!heapGS Σ} Δ s E Φ e e' :
(∀ (e'':=e'), e = e'') →
envs_entails Δ (WP e' @ s; E [{ Φ }]) → envs_entails Δ (WP e @ s; E [{ Φ }]).
Proof. by intros ->. Qed.
Robbert Krebbers
committed
Jacques-Henri Jourdan
committed
iStartProof;
lazymatch goal with
| |- envs_entails _ (wp ?s ?E ?e ?Q) =>
notypeclasses refine (tac_wp_expr_eval _ _ _ _ e _ _ _);
[let x := fresh in intros x; t; unfold x; notypeclasses refine eq_refl|]
| |- envs_entails _ (twp ?s ?E ?e ?Q) =>
notypeclasses refine (tac_twp_expr_eval _ _ _ _ e _ _ _);
[let x := fresh in intros x; t; unfold x; notypeclasses refine eq_refl|]
| _ => fail "wp_expr_eval: not a 'wp'"
end.
Ltac wp_expr_simpl := wp_expr_eval simpl.
Lemma tac_wp_pure `{!heapGS Σ} Δ Δ' s E K e1 e2 φ n Φ :
envs_entails Δ' (WP (fill K e2) @ s; E {{ Φ }}) →
envs_entails Δ (WP (fill K e1) @ s; E {{ Φ }}).
Jacques-Henri Jourdan
committed
rewrite envs_entails_eq=> ??? HΔ'. rewrite into_laterN_env_sound /=.
(* We want [pure_exec_fill] to be available to TC search locally. *)
pose proof @pure_exec_fill.
rewrite HΔ' -lifting.wp_pure_step_later //.
Qed.
Lemma tac_twp_pure `{!heapGS Σ} Δ s E K e1 e2 φ n Φ :
envs_entails Δ (WP (fill K e2) @ s; E [{ Φ }]) →
envs_entails Δ (WP (fill K e1) @ s; E [{ Φ }]).
rewrite envs_entails_eq=> ?? ->.
(* We want [pure_exec_fill] to be available to TC search locally. *)
pose proof @pure_exec_fill.
rewrite -total_lifting.twp_pure_step //.
Lemma tac_wp_value_nofupd `{!heapGS Σ} Δ s E Φ v :
envs_entails Δ (Φ v) → envs_entails Δ (WP (Val v) @ s; E {{ Φ }}).
Proof. rewrite envs_entails_eq=> ->. by apply wp_value. Qed.
Lemma tac_twp_value_nofupd `{!heapGS Σ} Δ s E Φ v :
envs_entails Δ (Φ v) → envs_entails Δ (WP (Val v) @ s; E [{ Φ }]).
Proof. rewrite envs_entails_eq=> ->. by apply twp_value. Qed.
Lemma tac_wp_value `{!heapGS Σ} Δ s E (Φ : val → iPropI Σ) v :
envs_entails Δ (|={E}=> Φ v) → envs_entails Δ (WP (Val v) @ s; E {{ Φ }}).
Proof. rewrite envs_entails_eq=> ->. by rewrite wp_value_fupd. Qed.
Lemma tac_twp_value `{!heapGS Σ} Δ s E (Φ : val → iPropI Σ) v :
envs_entails Δ (|={E}=> Φ v) → envs_entails Δ (WP (Val v) @ s; E [{ Φ }]).
Proof. rewrite envs_entails_eq=> ->. by rewrite twp_value_fupd. Qed.
(** Simplify the goal if it is [WP] of a value.
If the postcondition already allows a fupd, do not add a second one.
But otherwise, *do* add a fupd. This ensures that all the lemmas applied
here are bidirectional, so we never will make a goal unprovable. *)
| |- envs_entails _ (wp ?s ?E (Val _) (λ _, fupd ?E _ _)) =>
| |- envs_entails _ (wp ?s ?E (Val _) (λ _, wp _ ?E _ _)) =>
eapply tac_wp_value_nofupd
| |- envs_entails _ (wp ?s ?E (Val _) _) =>
eapply tac_wp_value
| |- envs_entails _ (twp ?s ?E (Val _) (λ _, fupd ?E _ _)) =>
| |- envs_entails _ (twp ?s ?E (Val _) (λ _, twp _ ?E _ _)) =>
eapply tac_twp_value_nofupd
| |- envs_entails _ (twp ?s ?E (Val _) _) =>
eapply tac_twp_value
end.
Ltac wp_finish :=
wp_expr_simpl; (* simplify occurences of subst/fill *)
try wp_value_head; (* in case we have reached a value, get rid of the WP *)
pm_prettify. (* prettify ▷s caused by [MaybeIntoLaterNEnvs] and
λs caused by wp_value *)
Ltac solve_vals_compare_safe :=
(* The first branch is for when we have [vals_compare_safe] in the context.
The other two branches are for when either one of the branches reduces to
[True] or we have it in the context. *)
fast_done || (left; fast_done) || (right; fast_done).
(** The argument [efoc] can be used to specify the construct that should be
reduced. For example, you can write [wp_pure (EIf _ _ _)], which will search
for an [EIf _ _ _] in the expression, and reduce it.
The use of [open_constr] in this tactic is essential. It will convert all holes
(i.e. [_]s) into evars, that later get unified when an occurences is found
(see [unify e' efoc] in the code below). *)
Tactic Notation "wp_pure" open_constr(efoc) :=
iStartProof;
lazymatch goal with
| |- envs_entails _ (wp ?s ?E ?e ?Q) =>
let e := eval simpl in e in
reshape_expr e ltac:(fun K e' =>
unify e' efoc;
|try solve_vals_compare_safe (* The pure condition for PureExec --
handles trivial goals, including [vals_compare_safe] *)
|wp_finish (* new goal *)
|| fail "wp_pure: cannot find" efoc "in" e "or" efoc "is not a redex"
| |- envs_entails _ (twp ?s ?E ?e ?Q) =>
let e := eval simpl in e in
reshape_expr e ltac:(fun K e' =>
unify e' efoc;
|try solve_vals_compare_safe (* The pure condition for PureExec *)
|wp_finish (* new goal *)
|| fail "wp_pure: cannot find" efoc "in" e "or" efoc "is not a redex"
| _ => fail "wp_pure: not a 'wp'"
(* TODO: do this in one go, without [repeat]. *)
Ltac wp_pures :=
iStartProof;
first [ (* The `;[]` makes sure that no side-condition magically spawns. *)
progress repeat (wp_pure _; [])
| wp_finish (* In case wp_pure never ran, make sure we do the usual cleanup. *)
].
(** Unlike [wp_pures], the tactics [wp_rec] and [wp_lam] should also reduce
lambdas/recs that are hidden behind a definition, i.e. they should use
[AsRecV_recv] as a proper instance instead of a [Hint Extern].
We achieve this by putting [AsRecV_recv] in the current environment so that it
can be used as an instance by the typeclass resolution system. We then perform
the reduction, and finally we clear this new hypothesis. *)
Tactic Notation "wp_if" := wp_pure (If _ _ _).
Tactic Notation "wp_if_true" := wp_pure (If (LitV (LitBool true)) _ _).
Tactic Notation "wp_if_false" := wp_pure (If (LitV (LitBool false)) _ _).
Tactic Notation "wp_unop" := wp_pure (UnOp _ _).
Tactic Notation "wp_binop" := wp_pure (BinOp _ _ _).
Tactic Notation "wp_op" := wp_unop || wp_binop.
Tactic Notation "wp_lam" := wp_rec.
Tactic Notation "wp_let" := wp_pure (Rec BAnon (BNamed _) _); wp_lam.
Tactic Notation "wp_seq" := wp_pure (Rec BAnon BAnon _); wp_lam.
Tactic Notation "wp_proj" := wp_pure (Fst _) || wp_pure (Snd _).
Tactic Notation "wp_case" := wp_pure (Case _ _ _).
Tactic Notation "wp_match" := wp_case; wp_pure (Rec _ _ _); wp_lam.
Tactic Notation "wp_inj" := wp_pure (InjL _) || wp_pure (InjR _).
Tactic Notation "wp_pair" := wp_pure (Pair _ _).
Tactic Notation "wp_closure" := wp_pure (Rec _ _ _).
Lemma tac_wp_bind `{!heapGS Σ} K Δ s E Φ e f :
f = (λ e, fill K e) → (* as an eta expanded hypothesis so that we can `simpl` it *)
envs_entails Δ (WP e @ s; E {{ v, WP f (Val v) @ s; E {{ Φ }} }})%I →
Jacques-Henri Jourdan
committed
Proof. rewrite envs_entails_eq=> -> ->. by apply: wp_bind. Qed.
Lemma tac_twp_bind `{!heapGS Σ} K Δ s E Φ e f :
f = (λ e, fill K e) → (* as an eta expanded hypothesis so that we can `simpl` it *)
envs_entails Δ (WP e @ s; E [{ v, WP f (Val v) @ s; E [{ Φ }] }])%I →
envs_entails Δ (WP fill K e @ s; E [{ Φ }]).
Jacques-Henri Jourdan
committed
Proof. rewrite envs_entails_eq=> -> ->. by apply: twp_bind. Qed.
Ltac wp_bind_core K :=
lazymatch eval hnf in K with
| [] => idtac
| _ => eapply (tac_wp_bind K); [simpl; reflexivity|reduction.pm_prettify]
Ltac twp_bind_core K :=
lazymatch eval hnf in K with
| [] => idtac
| _ => eapply (tac_twp_bind K); [simpl; reflexivity|reduction.pm_prettify]
Tactic Notation "wp_bind" open_constr(efoc) :=
iStartProof;
lazymatch goal with
| |- envs_entails _ (wp ?s ?E ?e ?Q) =>
first [ reshape_expr e ltac:(fun K e' => unify e' efoc; wp_bind_core K)
| |- envs_entails _ (twp ?s ?E ?e ?Q) =>
first [ reshape_expr e ltac:(fun K e' => unify e' efoc; twp_bind_core K)
| _ => fail "wp_bind: not a 'wp'"
end.
(** Heap tactics *)
Implicit Types P Q : iProp Σ.
Implicit Types Φ : val → iProp Σ.
Implicit Types v : val.
Implicit Types z : Z.
match envs_app false (Esnoc Enil j (array l (DfracOwn 1) (replicate (Z.to_nat n) v))) Δ' with
| Some Δ'' =>
envs_entails Δ'' (WP fill K (Val $ LitV $ LitLoc l) @ s; E {{ Φ }})
| None => False
end) →
envs_entails Δ (WP fill K (AllocN (Val $ LitV $ LitInt n) (Val v)) @ s; E {{ Φ }}).
Proof.
rewrite envs_entails_eq=> ? ? HΔ.
rewrite -wp_bind. eapply wand_apply; first exact: wp_allocN.
rewrite left_id into_laterN_env_sound; apply later_mono, forall_intro=> l.
specialize (HΔ l).
destruct (envs_app _ _ _) as [Δ''|] eqn:HΔ'; [ | contradiction ].
rewrite envs_app_sound //; simpl.
apply wand_intro_l. by rewrite (sep_elim_l (l ↦∗ _)%I) right_id wand_elim_r.
match envs_app false (Esnoc Enil j (array l (DfracOwn 1) (replicate (Z.to_nat n) v))) Δ with
| Some Δ' =>
envs_entails Δ' (WP fill K (Val $ LitV $ LitLoc l) @ s; E [{ Φ }])
| None => False
end) →
envs_entails Δ (WP fill K (AllocN (Val $ LitV $ LitInt n) (Val v)) @ s; E [{ Φ }]).
Proof.
rewrite envs_entails_eq=> ? HΔ.
rewrite -twp_bind. eapply wand_apply; first exact: twp_allocN.
rewrite left_id. apply forall_intro=> l.
specialize (HΔ l).
destruct (envs_app _ _ _) as [Δ'|] eqn:HΔ'; [ | contradiction ].
rewrite envs_app_sound //; simpl.
apply wand_intro_l. by rewrite (sep_elim_l (l ↦∗ _)%I) right_id wand_elim_r.
Lemma tac_wp_alloc Δ Δ' s E j K v Φ :
Robbert Krebbers
committed
MaybeIntoLaterNEnvs 1 Δ Δ' →
(∀ l,
match envs_app false (Esnoc Enil j (l ↦ v)) Δ' with
| Some Δ'' =>
envs_entails Δ'' (WP fill K (Val $ LitV l) @ s; E {{ Φ }})
| None => False
end) →
envs_entails Δ (WP fill K (Alloc (Val v)) @ s; E {{ Φ }}).
rewrite envs_entails_eq=> ? HΔ.
rewrite -wp_bind. eapply wand_apply; first exact: wp_alloc.
rewrite left_id into_laterN_env_sound; apply later_mono, forall_intro=> l.
specialize (HΔ l).
destruct (envs_app _ _ _) as [Δ''|] eqn:HΔ'; [ | contradiction ].
rewrite envs_app_sound //; simpl.
apply wand_intro_l. by rewrite (sep_elim_l (l ↦ v)%I) right_id wand_elim_r.
Lemma tac_twp_alloc Δ s E j K v Φ :
(∀ l,
match envs_app false (Esnoc Enil j (l ↦ v)) Δ with
| Some Δ' =>
envs_entails Δ' (WP fill K (Val $ LitV $ LitLoc l) @ s; E [{ Φ }])
| None => False
end) →
envs_entails Δ (WP fill K (Alloc (Val v)) @ s; E [{ Φ }]).
rewrite envs_entails_eq=> HΔ.
rewrite -twp_bind. eapply wand_apply; first exact: twp_alloc.
rewrite left_id. apply forall_intro=> l.
specialize (HΔ l).
destruct (envs_app _ _ _) as [Δ''|] eqn:HΔ'; [ | contradiction ].
rewrite envs_app_sound //; simpl.
apply wand_intro_l. by rewrite (sep_elim_l (l ↦ v)%I) right_id wand_elim_r.
Lemma tac_wp_free Δ Δ' s E i K l v Φ :
MaybeIntoLaterNEnvs 1 Δ Δ' →
envs_lookup i Δ' = Some (false, l ↦ v)%I →
(let Δ'' := envs_delete false i false Δ' in
envs_entails Δ'' (WP fill K (Val $ LitV LitUnit) @ s; E {{ Φ }})) →
envs_entails Δ (WP fill K (Free (LitV l)) @ s; E {{ Φ }}).
Proof.
rewrite envs_entails_eq=> ? Hlk Hfin.
rewrite -wp_bind. eapply wand_apply; first exact: wp_free.
rewrite into_laterN_env_sound -later_sep envs_lookup_split //; simpl.
rewrite -Hfin wand_elim_r (envs_lookup_sound' _ _ _ _ _ Hlk).
apply later_mono, sep_mono_r, wand_intro_r. rewrite right_id //.
Qed.
Lemma tac_twp_free Δ s E i K l v Φ :
envs_lookup i Δ = Some (false, l ↦ v)%I →
(let Δ' := envs_delete false i false Δ in
envs_entails Δ' (WP fill K (Val $ LitV LitUnit) @ s; E [{ Φ }])) →
envs_entails Δ (WP fill K (Free (LitV l)) @ s; E [{ Φ }]).
Proof.
rewrite envs_entails_eq=> Hlk Hfin.
rewrite -twp_bind. eapply wand_apply; first exact: twp_free.
rewrite envs_lookup_split //; simpl.
rewrite -Hfin wand_elim_r (envs_lookup_sound' _ _ _ _ _ Hlk).
apply sep_mono_r, wand_intro_r. rewrite right_id //.
Qed.
Lemma tac_wp_load Δ Δ' s E i K b l q v Φ :
Robbert Krebbers
committed
MaybeIntoLaterNEnvs 1 Δ Δ' →
envs_lookup i Δ' = Some (b, l ↦{q} v)%I →
envs_entails Δ' (WP fill K (Val v) @ s; E {{ Φ }}) →
envs_entails Δ (WP fill K (Load (LitV l)) @ s; E {{ Φ }}).
rewrite envs_entails_eq=> ?? Hi.
rewrite -wp_bind. eapply wand_apply; first exact: wp_load.
rewrite into_laterN_env_sound -later_sep envs_lookup_split //; simpl.
apply later_mono.
destruct b; simpl.
* iIntros "[#$ He]". iIntros "_". iApply Hi. iApply "He". iFrame "#".
* by apply sep_mono_r, wand_mono.
Lemma tac_twp_load Δ s E i K b l q v Φ :
envs_lookup i Δ = Some (b, l ↦{q} v)%I →
envs_entails Δ (WP fill K (Val v) @ s; E [{ Φ }]) →
envs_entails Δ (WP fill K (Load (LitV l)) @ s; E [{ Φ }]).
rewrite -twp_bind. eapply wand_apply; first exact: twp_load.
rewrite envs_lookup_split //; simpl.
destruct b; simpl.
- iIntros "[#$ He]". iIntros "_". iApply Hi. iApply "He". iFrame "#".
- iIntros "[$ He]". iIntros "Hl". iApply Hi. iApply "He". iFrame "Hl".
Lemma tac_wp_store Δ Δ' s E i K l v v' Φ :
Robbert Krebbers
committed
MaybeIntoLaterNEnvs 1 Δ Δ' →
match envs_simple_replace i false (Esnoc Enil i (l ↦ v')) Δ' with
| Some Δ'' => envs_entails Δ'' (WP fill K (Val $ LitV LitUnit) @ s; E {{ Φ }})
| None => False
end →
envs_entails Δ (WP fill K (Store (LitV l) (Val v')) @ s; E {{ Φ }}).
rewrite envs_entails_eq=> ???.
destruct (envs_simple_replace _ _ _) as [Δ''|] eqn:HΔ''; [ | contradiction ].
rewrite -wp_bind. eapply wand_apply; first by eapply wp_store.
rewrite into_laterN_env_sound -later_sep envs_simple_replace_sound //; simpl.
rewrite right_id. by apply later_mono, sep_mono_r, wand_mono.
Qed.
Lemma tac_twp_store Δ s E i K l v v' Φ :
envs_lookup i Δ = Some (false, l ↦ v)%I →
match envs_simple_replace i false (Esnoc Enil i (l ↦ v')) Δ with
| Some Δ' => envs_entails Δ' (WP fill K (Val $ LitV LitUnit) @ s; E [{ Φ }])
| None => False
end →
envs_entails Δ (WP fill K (Store (LitV l) v') @ s; E [{ Φ }]).
rewrite envs_entails_eq. intros.
destruct (envs_simple_replace _ _ _) as [Δ''|] eqn:HΔ''; [ | contradiction ].
rewrite -twp_bind. eapply wand_apply; first by eapply twp_store.
rewrite envs_simple_replace_sound //; simpl.
rewrite right_id. by apply sep_mono_r, wand_mono.
Qed.
Lemma tac_wp_xchg Δ Δ' s E i K l v v' Φ :
MaybeIntoLaterNEnvs 1 Δ Δ' →
envs_lookup i Δ' = Some (false, l ↦ v)%I →
match envs_simple_replace i false (Esnoc Enil i (l ↦ v')) Δ' with
| Some Δ'' => envs_entails Δ'' (WP fill K (Val $ v) @ s; E {{ Φ }})
| None => False
end →
envs_entails Δ (WP fill K (Xchg (LitV l) (Val v')) @ s; E {{ Φ }}).
Proof.
destruct (envs_simple_replace _ _ _) as [Δ''|] eqn:HΔ''; [ | contradiction ].
rewrite -wp_bind. eapply wand_apply; first by eapply wp_xchg.
rewrite into_laterN_env_sound -later_sep envs_simple_replace_sound //; simpl.
rewrite right_id.
by apply later_mono, sep_mono_r, wand_mono.
Qed.
Lemma tac_twp_xchg Δ s E i K l v v' Φ :
envs_lookup i Δ = Some (false, l ↦ v)%I →
match envs_simple_replace i false (Esnoc Enil i (l ↦ v')) Δ with
| Some Δ' => envs_entails Δ' (WP fill K (Val $ v) @ s; E [{ Φ }])
| None => False
end →
envs_entails Δ (WP fill K (Xchg (LitV l) v') @ s; E [{ Φ }]).
Proof.
rewrite envs_entails_eq. intros.
destruct (envs_simple_replace _ _ _) as [Δ''|] eqn:HΔ''; [ | contradiction ].
rewrite -twp_bind. eapply wand_apply; first by eapply twp_xchg.
rewrite envs_simple_replace_sound //; simpl.
rewrite right_id. by apply sep_mono_r, wand_mono.
Qed.
Lemma tac_wp_cmpxchg Δ Δ' s E i K l v v1 v2 Φ :

Ralf Jung
committed
MaybeIntoLaterNEnvs 1 Δ Δ' →
envs_lookup i Δ' = Some (false, l ↦ v)%I →
vals_compare_safe v v1 →
match envs_simple_replace i false (Esnoc Enil i (l ↦ v2)) Δ' with
| Some Δ'' =>
v = v1 →
envs_entails Δ'' (WP fill K (Val $ PairV v (LitV $ LitBool true)) @ s; E {{ Φ }})
| None => False
end →
envs_entails Δ' (WP fill K (Val $ PairV v (LitV $ LitBool false)) @ s; E {{ Φ }})) →
envs_entails Δ (WP fill K (CmpXchg (LitV l) (Val v1) (Val v2)) @ s; E {{ Φ }}).

Ralf Jung
committed
Proof.
rewrite envs_entails_eq=> ??? Hsuc Hfail.
destruct (envs_simple_replace _ _ _ _) as [Δ''|] eqn:HΔ''; [ | contradiction ].
destruct (decide (v = v1)) as [Heq|Hne].
- rewrite -wp_bind. eapply wand_apply.

Ralf Jung
committed
rewrite into_laterN_env_sound -later_sep /= {1}envs_simple_replace_sound //; simpl.
apply later_mono, sep_mono_r. rewrite right_id. apply wand_mono; auto.
- rewrite -wp_bind. eapply wand_apply.

Ralf Jung
committed
rewrite into_laterN_env_sound -later_sep /= {1}envs_lookup_split //; simpl.
apply later_mono, sep_mono_r. apply wand_mono; auto.
Qed.
Lemma tac_twp_cmpxchg Δ s E i K l v v1 v2 Φ :

Ralf Jung
committed
envs_lookup i Δ = Some (false, l ↦ v)%I →
vals_compare_safe v v1 →
match envs_simple_replace i false (Esnoc Enil i (l ↦ v2)) Δ with
| Some Δ' =>
v = v1 →
envs_entails Δ' (WP fill K (Val $ PairV v (LitV $ LitBool true)) @ s; E [{ Φ }])
| None => False
end →
envs_entails Δ (WP fill K (Val $ PairV v (LitV $ LitBool false)) @ s; E [{ Φ }])) →
envs_entails Δ (WP fill K (CmpXchg (LitV l) v1 v2) @ s; E [{ Φ }]).

Ralf Jung
committed
Proof.
rewrite envs_entails_eq=> ?? Hsuc Hfail.
destruct (envs_simple_replace _ _ _ _) as [Δ''|] eqn:HΔ''; [ | contradiction ].
destruct (decide (v = v1)) as [Heq|Hne].
- rewrite -twp_bind. eapply wand_apply.

Ralf Jung
committed
rewrite /= {1}envs_simple_replace_sound //; simpl.
apply sep_mono_r. rewrite right_id. apply wand_mono; auto.
- rewrite -twp_bind. eapply wand_apply.

Ralf Jung
committed
rewrite /= {1}envs_lookup_split //; simpl.
apply sep_mono_r. apply wand_mono; auto.
Qed.
Lemma tac_wp_cmpxchg_fail Δ Δ' s E i K l q v v1 v2 Φ :
Robbert Krebbers
committed
MaybeIntoLaterNEnvs 1 Δ Δ' →

Ralf Jung
committed
envs_lookup i Δ' = Some (false, l ↦{q} v)%I →
v ≠ v1 → vals_compare_safe v v1 →
envs_entails Δ' (WP fill K (Val $ PairV v (LitV $ LitBool false)) @ s; E {{ Φ }}) →
envs_entails Δ (WP fill K (CmpXchg (LitV l) v1 v2) @ s; E {{ Φ }}).
rewrite envs_entails_eq=> ?????.
rewrite -wp_bind. eapply wand_apply; first exact: wp_cmpxchg_fail.
rewrite into_laterN_env_sound -later_sep envs_lookup_split //; simpl.
Lemma tac_twp_cmpxchg_fail Δ s E i K l q v v1 v2 Φ :

Ralf Jung
committed
envs_lookup i Δ = Some (false, l ↦{q} v)%I →
v ≠ v1 → vals_compare_safe v v1 →
envs_entails Δ (WP fill K (Val $ PairV v (LitV $ LitBool false)) @ s; E [{ Φ }]) →
envs_entails Δ (WP fill K (CmpXchg (LitV l) v1 v2) @ s; E [{ Φ }]).
Jacques-Henri Jourdan
committed
rewrite envs_entails_eq. intros. rewrite -twp_bind.
eapply wand_apply; first exact: twp_cmpxchg_fail.
(* [//] solves some evars and enables further simplification. *)
rewrite envs_lookup_split /= // /=. by do 2 f_equiv.
Lemma tac_wp_cmpxchg_suc Δ Δ' s E i K l v v1 v2 Φ :
Robbert Krebbers
committed
MaybeIntoLaterNEnvs 1 Δ Δ' →

Ralf Jung
committed
envs_lookup i Δ' = Some (false, l ↦ v)%I →
v = v1 → vals_compare_safe v v1 →
match envs_simple_replace i false (Esnoc Enil i (l ↦ v2)) Δ' with
| Some Δ'' =>
envs_entails Δ'' (WP fill K (Val $ PairV v (LitV $ LitBool true)) @ s; E {{ Φ }})
| None => False
end →
envs_entails Δ (WP fill K (CmpXchg (LitV l) v1 v2) @ s; E {{ Φ }}).
rewrite envs_entails_eq=> ?????; subst.
destruct (envs_simple_replace _ _ _) as [Δ''|] eqn:HΔ''; [ | contradiction ].

Ralf Jung
committed
rewrite -wp_bind. eapply wand_apply.
rewrite into_laterN_env_sound -later_sep envs_simple_replace_sound //; simpl.
rewrite right_id. by apply later_mono, sep_mono_r, wand_mono.
Qed.
Lemma tac_twp_cmpxchg_suc Δ s E i K l v v1 v2 Φ :

Ralf Jung
committed
envs_lookup i Δ = Some (false, l ↦ v)%I →
v = v1 → vals_compare_safe v v1 →
match envs_simple_replace i false (Esnoc Enil i (l ↦ v2)) Δ with
| Some Δ' =>
envs_entails Δ' (WP fill K (Val $ PairV v (LitV $ LitBool true)) @ s; E [{ Φ }])
| None => False
end →
envs_entails Δ (WP fill K (CmpXchg (LitV l) v1 v2) @ s; E [{ Φ }]).
rewrite envs_entails_eq=>????; subst.
destruct (envs_simple_replace _ _ _) as [Δ''|] eqn:HΔ''; [ | contradiction ].

Ralf Jung
committed
rewrite -twp_bind. eapply wand_apply.
rewrite envs_simple_replace_sound //; simpl.
rewrite right_id. by apply sep_mono_r, wand_mono.
Qed.
Lemma tac_wp_faa Δ Δ' s E i K l z1 z2 Φ :
Robbert Krebbers
committed
MaybeIntoLaterNEnvs 1 Δ Δ' →
envs_lookup i Δ' = Some (false, l ↦ LitV z1)%I →
match envs_simple_replace i false (Esnoc Enil i (l ↦ LitV (LitInt (z1 + z2)))) Δ' with
| Some Δ'' => envs_entails Δ'' (WP fill K (Val $ LitV z1) @ s; E {{ Φ }})
| None => False
end →
envs_entails Δ (WP fill K (FAA (LitV l) (LitV z2)) @ s; E {{ Φ }}).
rewrite envs_entails_eq=> ???.
destruct (envs_simple_replace _ _ _) as [Δ''|] eqn:HΔ''; [ | contradiction ].
rewrite -wp_bind. eapply wand_apply; first exact: (wp_faa _ _ _ z1 z2).
rewrite into_laterN_env_sound -later_sep envs_simple_replace_sound //; simpl.
rewrite right_id. by apply later_mono, sep_mono_r, wand_mono.
Qed.
Lemma tac_twp_faa Δ s E i K l z1 z2 Φ :
envs_lookup i Δ = Some (false, l ↦ LitV z1)%I →
match envs_simple_replace i false (Esnoc Enil i (l ↦ LitV (LitInt (z1 + z2)))) Δ with
| Some Δ' => envs_entails Δ' (WP fill K (Val $ LitV z1) @ s; E [{ Φ }])
| None => False
end →
envs_entails Δ (WP fill K (FAA (LitV l) (LitV z2)) @ s; E [{ Φ }]).
rewrite envs_entails_eq=> ??.
destruct (envs_simple_replace _ _ _) as [Δ'|] eqn:HΔ'; [ | contradiction ].
rewrite -twp_bind. eapply wand_apply; first exact: (twp_faa _ _ _ z1 z2).
rewrite envs_simple_replace_sound //; simpl.
rewrite right_id. by apply sep_mono_r, wand_mono.
Qed.
Robbert Krebbers
committed
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
(** The tactic [wp_apply_core lem tac_suc tac_fail] evaluates [lem] to a
hypothesis [H] that can be applied, and then runs [wp_bind_core K; tac_suc H]
for every possible evaluation context [K].
- The tactic [tac_suc] should do [iApplyHyp H] to actually apply the hypothesis,
but can perform other operations in addition (see [wp_apply] and [awp_apply]
below).
- The tactic [tac_fail cont] is called when [tac_suc H] fails for all evaluation
contexts [K], and can perform further operations before invoking [cont] to
try again.
TC resolution of [lem] premises happens *after* [tac_suc H] got executed. *)
Ltac wp_apply_core lem tac_suc tac_fail := first
[iPoseProofCore lem as false (fun H =>
lazymatch goal with
| |- envs_entails _ (wp ?s ?E ?e ?Q) =>
reshape_expr e ltac:(fun K e' =>
wp_bind_core K; tac_suc H)
| |- envs_entails _ (twp ?s ?E ?e ?Q) =>
reshape_expr e ltac:(fun K e' =>
twp_bind_core K; tac_suc H)
| _ => fail 1 "wp_apply: not a 'wp'"
end)
|tac_fail ltac:(fun _ => wp_apply_core lem tac_suc tac_fail)
|let P := type of lem in
fail "wp_apply: cannot apply" lem ":" P ].
Tactic Notation "wp_apply" open_constr(lem) :=
Robbert Krebbers
committed
wp_apply_core lem ltac:(fun H => iApplyHyp H; try iNext; try wp_expr_simpl)
ltac:(fun cont => fail).
Tactic Notation "wp_smart_apply" open_constr(lem) :=
wp_apply_core lem ltac:(fun H => iApplyHyp H; try iNext; try wp_expr_simpl)
ltac:(fun cont => wp_pure _; []; cont ()).
(** Tactic tailored for atomic triples: the first, simple one just runs
[iAuIntro] on the goal, as atomic triples always have an atomic update as their
premise. The second one additionaly does some framing: it gets rid of [Hs] from
the context, which is intended to be the non-laterable assertions that iAuIntro
would choke on. You get them all back in the continuation of the atomic
operation. *)
Tactic Notation "awp_apply" open_constr(lem) :=
Robbert Krebbers
committed
wp_apply_core lem ltac:(fun H => iApplyHyp H) ltac:(fun cont => fail);
Tactic Notation "awp_apply" open_constr(lem) "without" constr(Hs) :=
(* Convert "list of hypothesis" into specialization pattern. *)
let Hs := words Hs in
let Hs := eval vm_compute in (INamed <$> Hs) in
Robbert Krebbers
committed
wp_apply_core lem
ltac:(fun H =>
iApply (wp_frame_wand with
[SGoal $ SpecGoal GSpatial false [] Hs false]); [iAccu|iApplyHyp H])
Robbert Krebbers
committed
ltac:(fun cont => fail);
Tactic Notation "wp_alloc" ident(l) "as" constr(H) :=
let finish _ :=
first [intros l | fail 1 "wp_alloc:" l "not fresh"];
pm_reduce;
lazymatch goal with
| |- False => fail 1 "wp_alloc:" H "not fresh"
| _ => iDestructHyp Htmp as H; wp_finish
end in
(** The code first tries to use allocation lemma for a single reference,
ie, [tac_wp_alloc] (respectively, [tac_twp_alloc]).
If that fails, it tries to use the lemma [tac_wp_allocN]
(respectively, [tac_twp_allocN]) for allocating an array.
Notice that we could have used the array allocation lemma also for single
references. However, that would produce the resource l ↦∗ [v] instead of
l ↦ v for single references. These are logically equivalent assertions
but are not equal. *)
lazymatch goal with
| |- envs_entails _ (wp ?s ?E ?e ?Q) =>
let process_single _ :=
first
[reshape_expr e ltac:(fun K e' => eapply (tac_wp_alloc _ _ _ _ Htmp K))
|fail 1 "wp_alloc: cannot find 'Alloc' in" e];
[iSolveTC
|finish ()]
in
let process_array _ :=
first
[reshape_expr e ltac:(fun K e' => eapply (tac_wp_allocN _ _ _ _ Htmp K))
|fail 1 "wp_alloc: cannot find 'Alloc' in" e];
[idtac|iSolveTC
|finish ()]
in (process_single ()) || (process_array ())
| |- envs_entails _ (twp ?s ?E ?e ?Q) =>
let process_single _ :=
first
[reshape_expr e ltac:(fun K e' => eapply (tac_twp_alloc _ _ _ Htmp K))
|fail 1 "wp_alloc: cannot find 'Alloc' in" e];
finish ()
in
let process_array _ :=
first
[reshape_expr e ltac:(fun K e' => eapply (tac_twp_allocN _ _ _ Htmp K))
|fail 1 "wp_alloc: cannot find 'Alloc' in" e];
| _ => fail "wp_alloc: not a 'wp'"
Tactic Notation "wp_alloc" ident(l) :=
Tactic Notation "wp_free" :=
let solve_mapsto _ :=
let l := match goal with |- _ = Some (_, (?l ↦{_} _)%I) => l end in
iAssumptionCore || fail "wp_free: cannot find" l "↦ ?" in
wp_pures;
lazymatch goal with
| |- envs_entails _ (wp ?s ?E ?e ?Q) =>
first
[reshape_expr e ltac:(fun K e' => eapply (tac_wp_free _ _ _ _ _ K))
|fail 1 "wp_free: cannot find 'Free' in" e];
[iSolveTC
|solve_mapsto ()
| |- envs_entails _ (twp ?s ?E ?e ?Q) =>
first
[reshape_expr e ltac:(fun K e' => eapply (tac_twp_free _ _ _ _ K))
|fail 1 "wp_free: cannot find 'Free' in" e];
[solve_mapsto ()
let solve_mapsto _ :=
let l := match goal with |- _ = Some (_, (?l ↦{_} _)%I) => l end in
iAssumptionCore || fail "wp_load: cannot find" l "↦ ?" in
lazymatch goal with
| |- envs_entails _ (wp ?s ?E ?e ?Q) =>
[reshape_expr e ltac:(fun K e' => eapply (tac_wp_load _ _ _ _ _ K))
|fail 1 "wp_load: cannot find 'Load' in" e];
| |- envs_entails _ (twp ?s ?E ?e ?Q) =>
first
[reshape_expr e ltac:(fun K e' => eapply (tac_twp_load _ _ _ _ K))
|fail 1 "wp_load: cannot find 'Load' in" e];
[solve_mapsto ()
| _ => fail "wp_load: not a 'wp'"
let solve_mapsto _ :=
let l := match goal with |- _ = Some (_, (?l ↦{_} _)%I) => l end in
iAssumptionCore || fail "wp_store: cannot find" l "↦ ?" in
lazymatch goal with
| |- envs_entails _ (wp ?s ?E ?e ?Q) =>
[reshape_expr e ltac:(fun K e' => eapply (tac_wp_store _ _ _ _ _ K))
|fail 1 "wp_store: cannot find 'Store' in" e];
|pm_reduce; first [wp_seq|wp_finish]]
| |- envs_entails _ (twp ?s ?E ?e ?Q) =>
first
[reshape_expr e ltac:(fun K e' => eapply (tac_twp_store _ _ _ _ K))
|fail 1 "wp_store: cannot find 'Store' in" e];
[solve_mapsto ()
|pm_reduce; first [wp_seq|wp_finish]]
| _ => fail "wp_store: not a 'wp'"
Tactic Notation "wp_xchg" :=
let solve_mapsto _ :=
let l := match goal with |- _ = Some (_, (?l ↦{_} _)%I) => l end in
iAssumptionCore || fail "wp_xchg: cannot find" l "↦ ?" in
wp_pures;
lazymatch goal with
| |- envs_entails _ (wp ?s ?E ?e ?Q) =>
first
[reshape_expr e ltac:(fun K e' => eapply (tac_wp_xchg _ _ _ _ _ K))
|fail 1 "wp_xchg: cannot find 'Xchg' in" e];
[iSolveTC
|solve_mapsto ()
|pm_reduce; first [wp_seq|wp_finish]]
| |- envs_entails _ (twp ?s ?E ?e ?Q) =>
first
[reshape_expr e ltac:(fun K e' => eapply (tac_twp_xchg _ _ _ _ K))
|fail 1 "wp_xchg: cannot find 'Xchg' in" e];
[solve_mapsto ()
|pm_reduce; first [wp_seq|wp_finish]]
| _ => fail "wp_xchg: not a 'wp'"
end.
Tactic Notation "wp_cmpxchg" "as" simple_intropattern(H1) "|" simple_intropattern(H2) :=

Ralf Jung
committed
let solve_mapsto _ :=
let l := match goal with |- _ = Some (_, (?l ↦{_} _)%I) => l end in
iAssumptionCore || fail "wp_cmpxchg: cannot find" l "↦ ?" in

Ralf Jung
committed
lazymatch goal with
| |- envs_entails _ (wp ?s ?E ?e ?Q) =>
first
[reshape_expr e ltac:(fun K e' => eapply (tac_wp_cmpxchg _ _ _ _ _ K))
|fail 1 "wp_cmpxchg: cannot find 'CmpXchg' in" e];

Ralf Jung
committed
[iSolveTC
|solve_mapsto ()
|try solve_vals_compare_safe
|pm_reduce; intros H1; wp_finish
|intros H2; wp_finish]

Ralf Jung
committed
| |- envs_entails _ (twp ?E ?e ?Q) =>
first
[reshape_expr e ltac:(fun K e' => eapply (tac_twp_cmpxchg _ _ _ _ K))
|fail 1 "wp_cmpxchg: cannot find 'CmpXchg' in" e];

Ralf Jung
committed
[solve_mapsto ()
|try solve_vals_compare_safe
|pm_reduce; intros H1; wp_finish
|intros H2; wp_finish]

Ralf Jung
committed
end.
let solve_mapsto _ :=
let l := match goal with |- _ = Some (_, (?l ↦{_} _)%I) => l end in
iAssumptionCore || fail "wp_cmpxchg_fail: cannot find" l "↦ ?" in
lazymatch goal with
| |- envs_entails _ (wp ?s ?E ?e ?Q) =>
[reshape_expr e ltac:(fun K e' => eapply (tac_wp_cmpxchg_fail _ _ _ _ _ K))
|fail 1 "wp_cmpxchg_fail: cannot find 'CmpXchg' in" e];
|try (simpl; congruence) (* value inequality *)
|try solve_vals_compare_safe
| |- envs_entails _ (twp ?s ?E ?e ?Q) =>
first
[reshape_expr e ltac:(fun K e' => eapply (tac_twp_cmpxchg_fail _ _ _ _ K))
|fail 1 "wp_cmpxchg_fail: cannot find 'CmpXchg' in" e];
|try (simpl; congruence) (* value inequality *)
|try solve_vals_compare_safe
let solve_mapsto _ :=
let l := match goal with |- _ = Some (_, (?l ↦{_} _)%I) => l end in
iAssumptionCore || fail "wp_cmpxchg_suc: cannot find" l "↦ ?" in
lazymatch goal with
| |- envs_entails _ (wp ?s ?E ?e ?Q) =>
[reshape_expr e ltac:(fun K e' => eapply (tac_wp_cmpxchg_suc _ _ _ _ _ K))
|fail 1 "wp_cmpxchg_suc: cannot find 'CmpXchg' in" e];
|try (simpl; congruence) (* value equality *)
|try solve_vals_compare_safe
[reshape_expr e ltac:(fun K e' => eapply (tac_twp_cmpxchg_suc _ _ _ _ K))
|fail 1 "wp_cmpxchg_suc: cannot find 'CmpXchg' in" e];
|try (simpl; congruence) (* value equality *)
|try solve_vals_compare_safe
Tactic Notation "wp_faa" :=
let solve_mapsto _ :=
let l := match goal with |- _ = Some (_, (?l ↦{_} _)%I) => l end in
iAssumptionCore || fail "wp_faa: cannot find" l "↦ ?" in
[reshape_expr e ltac:(fun K e' => eapply (tac_wp_faa _ _ _ _ _ K))

Ralf Jung
committed
|fail 1 "wp_faa: cannot find 'FAA' in" e];
| |- envs_entails _ (twp ?s ?E ?e ?Q) =>
first
[reshape_expr e ltac:(fun K e' => eapply (tac_twp_faa _ _ _ _ K))

Ralf Jung
committed
|fail 1 "wp_faa: cannot find 'FAA' in" e];
| _ => fail "wp_faa: not a 'wp'"
end.