Skip to content
Snippets Groups Projects
derived_laws.v 15.9 KiB
Newer Older
Ralf Jung's avatar
Ralf Jung committed
(** This file extends the HeapLang program logic with some derived laws (not
using the lifting lemmas) about arrays and prophecies.
Ralf Jung's avatar
Ralf Jung committed
For utility functions on arrays (e.g., freeing/copying an array), see
[heap_lang.lib.array].  *)
From stdpp Require Import fin_maps.
From iris.bi Require Import lib.fractional.
From iris.proofmode Require Import tactics.
Ralf Jung's avatar
Ralf Jung committed
From iris.heap_lang Require Export primitive_laws.
From iris.heap_lang Require Import tactics notation.
Ralf Jung's avatar
Ralf Jung committed
From iris.prelude Require Import options.
Ralf Jung's avatar
Ralf Jung committed
(** The [array] connective is a version of [mapsto] that works
with lists of values. *)
Ralf Jung's avatar
Ralf Jung committed

Definition array `{!heapGS Σ} (l : loc) (dq : dfrac) (vs : list val) : iProp Σ :=
  [ list] i  v  vs, (l + i) {dq} v.
Robbert Krebbers's avatar
Robbert Krebbers committed

(** FIXME: Refactor these notations using custom entries once Coq bug #13654
has been fixed. *)
Notation "l ↦∗{ dq } vs" := (array l dq vs)
  (at level 20, format "l  ↦∗{ dq }  vs") : bi_scope.
Notation "l ↦∗□ vs" := (array l DfracDiscarded vs)
  (at level 20, format "l  ↦∗□  vs") : bi_scope.
Notation "l ↦∗{# q } vs" := (array l (DfracOwn q) vs)
  (at level 20, format "l  ↦∗{# q }  vs") : bi_scope.
Notation "l ↦∗ vs" := (array l (DfracOwn 1) vs)
  (at level 20, format "l  ↦∗  vs") : bi_scope.
(** We have [FromSep] and [IntoSep] instances to split the fraction (via the
[AsFractional] instance below), but not for splitting the list, as that would
lead to overlapping instances. *)
Ralf Jung's avatar
Ralf Jung committed

Section lifting.
Context `{!heapGS Σ}.
Implicit Types P Q : iProp Σ.
Implicit Types Φ : val  iProp Σ.
Implicit Types σ : state.
Implicit Types v : val.
Implicit Types vs : list val.
Implicit Types l : loc.
Implicit Types sz off : nat.

Global Instance array_timeless l q vs : Timeless (array l q vs) := _.
Ralf Jung's avatar
Ralf Jung committed

Global Instance array_fractional l vs : Fractional (λ q, l ↦∗{#q} vs)%I := _.
Global Instance array_as_fractional l q vs :
  AsFractional (l ↦∗{#q} vs) (λ q, l ↦∗{#q} vs)%I q.
Proof. split; done || apply _. Qed.

Lemma array_nil l dq : l ↦∗{dq} [] ⊣⊢ emp.
Proof. by rewrite /array. Qed.

Lemma array_singleton l dq v : l ↦∗{dq} [v] ⊣⊢ l {dq} v.
Proof. by rewrite /array /= right_id loc_add_0. Qed.

Lemma array_app l dq vs ws :
  l ↦∗{dq} (vs ++ ws) ⊣⊢ l ↦∗{dq} vs  (l + length vs) ↦∗{dq} ws.
Proof.
  rewrite /array big_sepL_app.
  setoid_rewrite Nat2Z.inj_add.
  by setoid_rewrite loc_add_assoc.
Qed.

Lemma array_cons l dq v vs : l ↦∗{dq} (v :: vs) ⊣⊢ l {dq} v  (l + 1) ↦∗{dq} vs.
Proof.
  rewrite /array big_sepL_cons loc_add_0.
  setoid_rewrite loc_add_assoc.
  setoid_rewrite Nat2Z.inj_succ.
  by setoid_rewrite Z.add_1_l.
Qed.

Global Instance array_cons_frame l dq v vs R Q :
  Frame false R (l {dq} v  (l + 1) ↦∗{dq} vs) Q 
  Frame false R (l ↦∗{dq} (v :: vs)) Q | 2.
Proof. by rewrite /Frame array_cons. Qed.

Lemma update_array l dq vs off v :
  vs !! off = Some v 
   l ↦∗{dq} vs -∗ ((l + off) {dq} v   v', (l + off) {dq} v' -∗ l ↦∗{dq} <[off:=v']>vs).
Proof.
  iIntros (Hlookup) "Hl".
  rewrite -[X in (l ↦∗{_} X)%I](take_drop_middle _ off v); last done.
  iDestruct (array_app with "Hl") as "[Hl1 Hl]".
  iDestruct (array_cons with "Hl") as "[Hl2 Hl3]".
  assert (off < length vs) as H by (apply lookup_lt_is_Some; by eexists).
  rewrite take_length min_l; last by lia. iFrame "Hl2".
  iIntros (w) "Hl2".
  clear Hlookup. assert (<[off:=w]> vs !! off = Some w) as Hlookup.
  { apply list_lookup_insert. lia. }
  rewrite -[in (l ↦∗{_} <[off:=w]> vs)%I](take_drop_middle (<[off:=w]> vs) off w Hlookup).
  iApply array_app. rewrite take_insert; last by lia. iFrame.
  iApply array_cons. rewrite take_length min_l; last by lia. iFrame.
  rewrite drop_insert_gt; last by lia. done.
Robbert Krebbers's avatar
Robbert Krebbers committed
(** * Rules for allocation *)
Lemma mapsto_seq_array l dq v n :
  ([ list] i  seq 0 n, (l + (i : nat)) {dq} v) -∗
  l ↦∗{dq} replicate n v.
Proof.
  rewrite /array. iInduction n as [|n'] "IH" forall (l); simpl.
  { done. }
  iIntros "[$ Hl]". rewrite -fmap_S_seq big_sepL_fmap.
  setoid_rewrite Nat2Z.inj_succ. setoid_rewrite <-Z.add_1_l.
  setoid_rewrite <-loc_add_assoc. iApply "IH". done.
Qed.

Lemma twp_allocN s E v n :
  [[{ True }]] AllocN (Val $ LitV $ LitInt $ n) (Val v) @ s; E
  [[{ l, RET LitV (LitLoc l); l ↦∗ replicate (Z.to_nat n) v 
         [ list] i  seq 0 (Z.to_nat n), meta_token (l + (i : nat))  }]].
Proof.
  iIntros (Hzs Φ) "_ HΦ". iApply twp_allocN_seq; [done..|].
  iIntros (l) "Hlm". iApply "HΦ".
  iDestruct (big_sepL_sep with "Hlm") as "[Hl $]".
  by iApply mapsto_seq_array.
Qed.
Lemma wp_allocN s E v n :
  {{{ True }}} AllocN (Val $ LitV $ LitInt $ n) (Val v) @ s; E
  {{{ l, RET LitV (LitLoc l); l ↦∗ replicate (Z.to_nat n) v 
         [ list] i  seq 0 (Z.to_nat n), meta_token (l + (i : nat))  }}}.
Proof.
  iIntros (? Φ) "_ HΦ". iApply (twp_wp_step with "HΦ").
  iApply twp_allocN; [auto..|]; iIntros (l) "H HΦ". by iApply "HΦ".
Lemma twp_allocN_vec s E v n :
  [[{ True }]]
    AllocN #n v @ s ; E
  [[{ l, RET #l; l ↦∗ vreplicate (Z.to_nat n) v 
         [ list] i  seq 0 (Z.to_nat n), meta_token (l + (i : nat))  }]].
Proof.
  iIntros (Hzs Φ) "_ HΦ". iApply twp_allocN; [ lia | done | .. ].
  iIntros (l) "[Hl Hm]". iApply "HΦ". rewrite vec_to_list_replicate. iFrame.
Qed.
Lemma wp_allocN_vec s E v n :
  {{{ True }}}
    AllocN #n v @ s ; E
  {{{ l, RET #l; l ↦∗ vreplicate (Z.to_nat n) v 
         [ list] i  seq 0 (Z.to_nat n), meta_token (l + (i : nat))  }}}.
Proof.
  iIntros (? Φ) "_ HΦ". iApply (twp_wp_step with "HΦ").
  iApply twp_allocN_vec; [auto..|]; iIntros (l) "H HΦ". by iApply "HΦ".
Robbert Krebbers's avatar
Robbert Krebbers committed
(** * Rules for accessing array elements *)
Lemma twp_load_offset s E l dq off vs v :
  vs !! off = Some v 
  [[{ l ↦∗{dq} vs }]] ! #(l + off) @ s; E [[{ RET v; l ↦∗{dq} vs }]].
Proof.
  iIntros (Hlookup Φ) "Hl HΦ".
  iDestruct (update_array l _ _ _ _ Hlookup with "Hl") as "[Hl1 Hl2]".
  iApply (twp_load with "Hl1"). iIntros "Hl1". iApply "HΦ".
  iDestruct ("Hl2" $! v) as "Hl2". rewrite list_insert_id; last done.
  iApply "Hl2". iApply "Hl1".
Qed.
Lemma wp_load_offset s E l dq off vs v :
  vs !! off = Some v 
  {{{  l ↦∗{dq} vs }}} ! #(l + off) @ s; E {{{ RET v; l ↦∗{dq} vs }}}.
Proof.
  iIntros (? Φ) ">H HΦ". iApply (twp_wp_step with "HΦ").
  iApply (twp_load_offset with "H"); [by eauto..|]; iIntros "H HΦ".
  by iApply "HΦ".
Lemma twp_load_offset_vec s E l dq sz (off : fin sz) (vs : vec val sz) :
  [[{ l ↦∗{dq} vs }]] ! #(l + off) @ s; E [[{ RET vs !!! off; l ↦∗{dq} vs }]].
Proof. apply twp_load_offset. by apply vlookup_lookup. Qed.
Lemma wp_load_offset_vec s E l dq sz (off : fin sz) (vs : vec val sz) :
  {{{  l ↦∗{dq} vs }}} ! #(l + off) @ s; E {{{ RET vs !!! off; l ↦∗{dq} vs }}}.
Proof. apply wp_load_offset. by apply vlookup_lookup. Qed.

Lemma twp_store_offset s E l off vs v :
  is_Some (vs !! off) 
  [[{ l ↦∗ vs }]] #(l + off) <- v @ s; E [[{ RET #(); l ↦∗ <[off:=v]> vs }]].
Proof.
  iIntros ([w Hlookup] Φ) "Hl HΦ".
  iDestruct (update_array l _ _ _ _ Hlookup with "Hl") as "[Hl1 Hl2]".
  iApply (twp_store with "Hl1"). iIntros "Hl1".
  iApply "HΦ". iApply "Hl2". iApply "Hl1".
Qed.
Lemma wp_store_offset s E l off vs v :
  is_Some (vs !! off) 
  {{{  l ↦∗ vs }}} #(l + off) <- v @ s; E {{{ RET #(); l ↦∗ <[off:=v]> vs }}}.
Proof.
  iIntros (? Φ) ">H HΦ". iApply (twp_wp_step with "HΦ").
  iApply (twp_store_offset with "H"); [by eauto..|]; iIntros "H HΦ".
  by iApply "HΦ".
Lemma twp_store_offset_vec s E l sz (off : fin sz) (vs : vec val sz) v :
  [[{ l ↦∗ vs }]] #(l + off) <- v @ s; E [[{ RET #(); l ↦∗ vinsert off v vs }]].
Proof.
  setoid_rewrite vec_to_list_insert. apply twp_store_offset.
  eexists. by apply vlookup_lookup.
Qed.
Lemma wp_store_offset_vec s E l sz (off : fin sz) (vs : vec val sz) v :
  {{{  l ↦∗ vs }}} #(l + off) <- v @ s; E {{{ RET #(); l ↦∗ vinsert off v vs }}}.
Proof.
  iIntros (Φ) ">H HΦ". iApply (twp_wp_step with "HΦ").
  iApply (twp_store_offset_vec with "H"); [by eauto..|]; iIntros "H HΦ".
  by iApply "HΦ".
Lemma twp_xchg_offset s E l off vs v v' :
  vs !! off = Some v 
  [[{ l ↦∗ vs }]] Xchg #(l + off) v' @ s; E [[{ RET v; l ↦∗ <[off:=v']> vs }]].
Proof.
Simon Hudon's avatar
Simon Hudon committed
  iIntros (Hlookup Φ) "Hl HΦ".
  iDestruct (update_array l _ _ _ _ Hlookup with "Hl") as "[Hl1 Hl2]".
  iApply (twp_xchg with "Hl1"). iIntros "Hl1".
  iApply "HΦ". iApply "Hl2". iApply "Hl1".
Qed.
Lemma wp_xchg_offset s E l off vs v v' :
Simon Hudon's avatar
Simon Hudon committed
  vs !! off = Some v 
  {{{  l ↦∗ vs }}} Xchg #(l + off) v' @ s; E {{{ RET v; l ↦∗ <[off:=v']> vs }}}.
Proof.
Simon Hudon's avatar
Simon Hudon committed
  iIntros (? Φ) ">H HΦ". iApply (twp_wp_step with "HΦ").
  iApply (twp_xchg_offset with "H"); [by eauto..|]; iIntros "H HΦ".
  by iApply "HΦ".
Qed.

Lemma twp_xchg_offset_vec s E l sz (off : fin sz) (vs : vec val sz) v :
  [[{ l ↦∗ vs }]] Xchg #(l + off) v @ s; E [[{ RET (vs !!! off); l ↦∗ vinsert off v vs }]].
Proof.
  setoid_rewrite vec_to_list_insert. apply twp_xchg_offset.
  by apply vlookup_lookup.
Qed.
Lemma wp_xchg_offset_vec s E l sz (off : fin sz) (vs : vec val sz) v :
Simon Hudon's avatar
Simon Hudon committed
   {{{  l ↦∗ vs }}} Xchg #(l + off) v @ s; E {{{ RET (vs !!! off); l ↦∗ vinsert off v vs }}}.
Proof.
Simon Hudon's avatar
Simon Hudon committed
  iIntros (Φ) ">H HΦ". iApply (twp_wp_step with "HΦ").
  iApply (twp_xchg_offset_vec with "H"); [by eauto..|]; iIntros "H HΦ".
  by iApply "HΦ".
Lemma twp_cmpxchg_suc_offset s E l off vs v' v1 v2 :
  vs !! off = Some v' 
  v' = v1 
  vals_compare_safe v' v1 
  [[{ l ↦∗ vs }]]
    CmpXchg #(l + off) v1 v2 @ s; E
  [[{ RET (v', #true); l ↦∗ <[off:=v2]> vs }]].
Proof.
  iIntros (Hlookup ?? Φ) "Hl HΦ".
  iDestruct (update_array l _ _ _ _ Hlookup with "Hl") as "[Hl1 Hl2]".
  iApply (twp_cmpxchg_suc with "Hl1"); [done..|].
  iIntros "Hl1". iApply "HΦ". iApply "Hl2". iApply "Hl1".
Qed.
Lemma wp_cmpxchg_suc_offset s E l off vs v' v1 v2 :
  vs !! off = Some v' 
  v' = v1 
  vals_compare_safe v' v1 
  {{{  l ↦∗ vs }}}
    CmpXchg #(l + off) v1 v2 @ s; E
  {{{ RET (v', #true); l ↦∗ <[off:=v2]> vs }}}.
Proof.
  iIntros (??? Φ) ">H HΦ". iApply (twp_wp_step with "HΦ").
  iApply (twp_cmpxchg_suc_offset with "H"); [by eauto..|]; iIntros "H HΦ".
  by iApply "HΦ".
Lemma twp_cmpxchg_suc_offset_vec s E l sz (off : fin sz) (vs : vec val sz) v1 v2 :
  vs !!! off = v1 
  vals_compare_safe (vs !!! off) v1 
  [[{ l ↦∗ vs }]]
    CmpXchg #(l + off) v1 v2 @ s; E
  [[{ RET (vs !!! off, #true); l ↦∗ vinsert off v2 vs }]].
Proof.
  intros. setoid_rewrite vec_to_list_insert.
  apply twp_cmpxchg_suc_offset; [|done..].
  by apply vlookup_lookup.
Qed.
Lemma wp_cmpxchg_suc_offset_vec s E l sz (off : fin sz) (vs : vec val sz) v1 v2 :
  vs !!! off = v1 
  vals_compare_safe (vs !!! off) v1 
  {{{  l ↦∗ vs }}}
    CmpXchg #(l + off) v1 v2 @ s; E
  {{{ RET (vs !!! off, #true); l ↦∗ vinsert off v2 vs }}}.
Proof.
  iIntros (?? Φ) ">H HΦ". iApply (twp_wp_step with "HΦ").
  iApply (twp_cmpxchg_suc_offset_vec with "H"); [by eauto..|]; iIntros "H HΦ".
  by iApply "HΦ".
Lemma twp_cmpxchg_fail_offset s E l dq off vs v0 v1 v2 :
  vs !! off = Some v0 
  v0  v1 
  vals_compare_safe v0 v1 
  [[{ l ↦∗{dq} vs }]]
    CmpXchg #(l + off) v1 v2 @ s; E
  [[{ RET (v0, #false); l ↦∗{dq} vs }]].
Proof.
  iIntros (Hlookup HNEq Hcmp Φ) "Hl HΦ".
  iDestruct (update_array l _ _ _ _ Hlookup with "Hl") as "[Hl1 Hl2]".
  iApply (twp_cmpxchg_fail with "Hl1"); first done.
  { destruct Hcmp; by [ left | right ]. }
  iIntros "Hl1". iApply "HΦ". iDestruct ("Hl2" $! v0) as "Hl2".
  rewrite list_insert_id; last done. iApply "Hl2". iApply "Hl1".
Qed.
Lemma wp_cmpxchg_fail_offset s E l dq off vs v0 v1 v2 :
  vs !! off = Some v0 
  v0  v1 
  vals_compare_safe v0 v1 
  {{{  l ↦∗{dq} vs }}}
    CmpXchg #(l + off) v1 v2 @ s; E
  {{{ RET (v0, #false); l ↦∗{dq} vs }}}.
Proof.
  iIntros (??? Φ) ">H HΦ". iApply (twp_wp_step with "HΦ").
  iApply (twp_cmpxchg_fail_offset with "H"); [by eauto..|]; iIntros "H HΦ".
  by iApply "HΦ".
Lemma twp_cmpxchg_fail_offset_vec s E l dq sz (off : fin sz) (vs : vec val sz) v1 v2 :
  vs !!! off  v1 
  vals_compare_safe (vs !!! off) v1 
  [[{ l ↦∗{dq} vs }]]
    CmpXchg #(l + off) v1 v2 @ s; E
  [[{ RET (vs !!! off, #false); l ↦∗{dq} vs }]].
Proof.
  intros. apply twp_cmpxchg_fail_offset; [|done..].
  by apply vlookup_lookup.
Qed.
Lemma wp_cmpxchg_fail_offset_vec s E l dq sz (off : fin sz) (vs : vec val sz) v1 v2 :
  vs !!! off  v1 
  vals_compare_safe (vs !!! off) v1 
  {{{  l ↦∗{dq} vs }}}
    CmpXchg #(l + off) v1 v2 @ s; E
  {{{ RET (vs !!! off, #false); l ↦∗{dq} vs }}}.
Proof.
  intros. eapply wp_cmpxchg_fail_offset; [|done..].
  by apply vlookup_lookup.
Qed.
Lemma twp_faa_offset s E l off vs (i1 i2 : Z) :
  vs !! off = Some #i1 
  [[{ l ↦∗ vs }]] FAA #(l + off) #i2 @ s; E
  [[{ RET LitV (LitInt i1); l ↦∗ <[off:=#(i1 + i2)]> vs }]].
Proof.
  iIntros (Hlookup Φ) "Hl HΦ".
  iDestruct (update_array l _ _ _ _ Hlookup with "Hl") as "[Hl1 Hl2]".
  iApply (twp_faa with "Hl1").
  iIntros "Hl1". iApply "HΦ". iApply "Hl2". iApply "Hl1".
Qed.
Lemma wp_faa_offset s E l off vs (i1 i2 : Z) :
  vs !! off = Some #i1 
  {{{  l ↦∗ vs }}} FAA #(l + off) #i2 @ s; E
  {{{ RET LitV (LitInt i1); l ↦∗ <[off:=#(i1 + i2)]> vs }}}.
Proof.
  iIntros (? Φ) ">H HΦ". iApply (twp_wp_step with "HΦ").
  iApply (twp_faa_offset with "H"); [by eauto..|]; iIntros "H HΦ". by iApply "HΦ".
Lemma twp_faa_offset_vec s E l sz (off : fin sz) (vs : vec val sz) (i1 i2 : Z) :
  vs !!! off = #i1 
  [[{ l ↦∗ vs }]] FAA #(l + off) #i2 @ s; E
  [[{ RET LitV (LitInt i1); l ↦∗ vinsert off #(i1 + i2) vs }]].
Proof.
  intros. setoid_rewrite vec_to_list_insert. apply twp_faa_offset.
  by apply vlookup_lookup.
Qed.
Lemma wp_faa_offset_vec s E l sz (off : fin sz) (vs : vec val sz) (i1 i2 : Z) :
  vs !!! off = #i1 
  {{{  l ↦∗ vs }}} FAA #(l + off) #i2 @ s; E
  {{{ RET LitV (LitInt i1); l ↦∗ vinsert off #(i1 + i2) vs }}}.
Proof.
  iIntros (? Φ) ">H HΦ". iApply (twp_wp_step with "HΦ").
  iApply (twp_faa_offset_vec with "H"); [by eauto..|]; iIntros "H HΦ".
  by iApply "HΦ".
Ralf Jung's avatar
Ralf Jung committed

(** Derived prophecy laws *)

(** Lemmas for some particular expression inside the [Resolve]. *)
Lemma wp_resolve_proph s E (p : proph_id) (pvs : list (val * val)) v :
  {{{ proph p pvs }}}
    ResolveProph (Val $ LitV $ LitProphecy p) (Val v) @ s; E
  {{{ pvs', RET (LitV LitUnit); pvs = (LitV LitUnit, v)::pvs'  proph p pvs' }}}.
Proof.
  iIntros (Φ) "Hp HΦ". iApply (wp_resolve with "Hp"); first done.
  iApply lifting.wp_pure_step_later; first done. iApply wp_value.
Ralf Jung's avatar
Ralf Jung committed
  iIntros "!>" (vs') "HEq Hp". iApply "HΦ". iFrame.
Qed.

Lemma wp_resolve_cmpxchg_suc s E l (p : proph_id) (pvs : list (val * val)) v1 v2 v :
  vals_compare_safe v1 v1 
  {{{ proph p pvs   l  v1 }}}
    Resolve (CmpXchg #l v1 v2) #p v @ s; E
  {{{ RET (v1, #true) ;  pvs', pvs = ((v1, #true)%V, v)::pvs'  proph p pvs'  l  v2 }}}.
Proof.
  iIntros (Hcmp Φ) "[Hp Hl] HΦ".
  iApply (wp_resolve with "Hp"); first done.
  assert (val_is_unboxed v1) as Hv1; first by destruct Hcmp.
  iApply (wp_cmpxchg_suc with "Hl"); [done..|]. iIntros "!> Hl".
  iIntros (pvs' ->) "Hp". iApply "HΦ". eauto with iFrame.
Qed.

Lemma wp_resolve_cmpxchg_fail s E l (p : proph_id) (pvs : list (val * val)) dq v' v1 v2 v :
Ralf Jung's avatar
Ralf Jung committed
  v'  v1  vals_compare_safe v' v1 
  {{{ proph p pvs   l {dq} v' }}}
Ralf Jung's avatar
Ralf Jung committed
    Resolve (CmpXchg #l v1 v2) #p v @ s; E
  {{{ RET (v', #false) ;  pvs', pvs = ((v', #false)%V, v)::pvs'  proph p pvs'  l {dq} v' }}}.
Ralf Jung's avatar
Ralf Jung committed
Proof.
  iIntros (NEq Hcmp Φ) "[Hp Hl] HΦ".
  iApply (wp_resolve with "Hp"); first done.
  iApply (wp_cmpxchg_fail with "Hl"); [done..|]. iIntros "!> Hl".
  iIntros (pvs' ->) "Hp". iApply "HΦ". eauto with iFrame.
Qed.

End lifting.

Typeclasses Opaque array.