Skip to content
Snippets Groups Projects
Commit ccfa1196 authored by Robbert Krebbers's avatar Robbert Krebbers
Browse files

Add `big_sepL2_later_1`.

parent 0495f119
No related branches found
No related tags found
No related merge requests found
...@@ -1027,6 +1027,13 @@ Section list2. ...@@ -1027,6 +1027,13 @@ Section list2.
Context {A B : Type}. Context {A B : Type}.
Implicit Types Φ Ψ : nat A B PROP. Implicit Types Φ Ψ : nat A B PROP.
Lemma big_sepL2_later_1 `{BiAffine PROP} Φ l1 l2 :
( [ list] ky1;y2 l1;l2, Φ k y1 y2) [ list] ky1;y2 l1;l2, Φ k y1 y2.
Proof.
rewrite !big_sepL2_alt later_and big_sepL_later (timeless _ ⌝%I).
rewrite except_0_and. auto using and_mono, except_0_intro.
Qed.
Lemma big_sepL2_later_2 Φ l1 l2 : Lemma big_sepL2_later_2 Φ l1 l2 :
([ list] ky1;y2 l1;l2, Φ k y1 y2) [ list] ky1;y2 l1;l2, Φ k y1 y2. ([ list] ky1;y2 l1;l2, Φ k y1 y2) [ list] ky1;y2 l1;l2, Φ k y1 y2.
Proof. Proof.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment