Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
I
iris-coq
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Michael Sammler
iris-coq
Commits
c906fd45
Commit
c906fd45
authored
7 years ago
by
Robbert Krebbers
Browse files
Options
Downloads
Plain Diff
Merge commit '
86692e50
' into gen_proofmode
parents
75d13f06
86692e50
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
opam
+1
-1
1 addition, 1 deletion
opam
theories/bi/derived.v
+9
-11
9 additions, 11 deletions
theories/bi/derived.v
with
10 additions
and
12 deletions
opam
+
1
−
1
View file @
c906fd45
...
@@ -12,5 +12,5 @@ remove: ["rm" "-rf" "%{lib}%/coq/user-contrib/iris"]
...
@@ -12,5 +12,5 @@ remove: ["rm" "-rf" "%{lib}%/coq/user-contrib/iris"]
depends: [
depends: [
"coq" { >= "8.6.1" & < "8.8~" }
"coq" { >= "8.6.1" & < "8.8~" }
"coq-mathcomp-ssreflect" { (>= "1.6.1" & < "1.7~") | (= "dev") }
"coq-mathcomp-ssreflect" { (>= "1.6.1" & < "1.7~") | (= "dev") }
"coq-stdpp" { (= "dev.2017-11-1
1.0
") | (= "dev") }
"coq-stdpp" { (= "dev.2017-11-1
2.2
") | (= "dev") }
]
]
This diff is collapsed.
Click to expand it.
theories/bi/derived.v
+
9
−
11
View file @
c906fd45
...
@@ -1921,7 +1921,7 @@ Notation "P ⊣⊢ Q" := (equiv (A:=bi_car PROP) P%I Q%I).
...
@@ -1921,7 +1921,7 @@ Notation "P ⊣⊢ Q" := (equiv (A:=bi_car PROP) P%I Q%I).
Hint
Resolve
or_elim
or_intro_l'
or_intro_r'
True_intro
False_elim
.
Hint
Resolve
or_elim
or_intro_l'
or_intro_r'
True_intro
False_elim
.
Hint
Resolve
and_elim_l'
and_elim_r'
and_intro
forall_intro
.
Hint
Resolve
and_elim_l'
and_elim_r'
and_intro
forall_intro
.
Global
Instance
later_proper
'
:
Global
Instance
later_proper
:
Proper
((
⊣⊢
)
==>
(
⊣⊢
))
(
@
bi_later
PROP
)
:=
ne_proper
_
.
Proper
((
⊣⊢
)
==>
(
⊣⊢
))
(
@
bi_later
PROP
)
:=
ne_proper
_
.
(* Equality *)
(* Equality *)
...
@@ -1942,9 +1942,7 @@ Lemma later_equivI {A : ofeT} (x y : A) : Next x ≡ Next y ⊣⊢ ▷ (x ≡ y)
...
@@ -1942,9 +1942,7 @@ Lemma later_equivI {A : ofeT} (x y : A) : Next x ≡ Next y ⊣⊢ ▷ (x ≡ y)
Proof
.
apply
(
anti_symm
_);
auto
using
later_eq_1
,
later_eq_2
.
Qed
.
Proof
.
apply
(
anti_symm
_);
auto
using
later_eq_1
,
later_eq_2
.
Qed
.
(* Later derived *)
(* Later derived *)
Lemma
later_proper
P
Q
:
(
P
⊣⊢
Q
)
→
▷
P
⊣⊢
▷
Q
.
Hint
Resolve
later_mono
.
Proof
.
by
intros
->
.
Qed
.
Hint
Resolve
later_mono
later_proper
.
Global
Instance
later_mono'
:
Proper
((
⊢
)
==>
(
⊢
))
(
@
bi_later
PROP
)
.
Global
Instance
later_mono'
:
Proper
((
⊢
)
==>
(
⊢
))
(
@
bi_later
PROP
)
.
Proof
.
intros
P
Q
;
apply
later_mono
.
Qed
.
Proof
.
intros
P
Q
;
apply
later_mono
.
Qed
.
Global
Instance
later_flip_mono'
:
Global
Instance
later_flip_mono'
:
...
@@ -2021,9 +2019,9 @@ Proof. done. Qed.
...
@@ -2021,9 +2019,9 @@ Proof. done. Qed.
Lemma
later_laterN
n
P
:
▷^
(
S
n
)
P
⊣⊢
▷
▷^
n
P
.
Lemma
later_laterN
n
P
:
▷^
(
S
n
)
P
⊣⊢
▷
▷^
n
P
.
Proof
.
done
.
Qed
.
Proof
.
done
.
Qed
.
Lemma
laterN_later
n
P
:
▷^
(
S
n
)
P
⊣⊢
▷^
n
▷
P
.
Lemma
laterN_later
n
P
:
▷^
(
S
n
)
P
⊣⊢
▷^
n
▷
P
.
Proof
.
induction
n
;
simpl
;
auto
.
Qed
.
Proof
.
induction
n
;
f_equiv
/=
;
auto
.
Qed
.
Lemma
laterN_plus
n1
n2
P
:
▷^
(
n1
+
n2
)
P
⊣⊢
▷^
n1
▷^
n2
P
.
Lemma
laterN_plus
n1
n2
P
:
▷^
(
n1
+
n2
)
P
⊣⊢
▷^
n1
▷^
n2
P
.
Proof
.
induction
n1
;
simpl
;
auto
.
Qed
.
Proof
.
induction
n1
;
f_equiv
/=
;
auto
.
Qed
.
Lemma
laterN_le
n1
n2
P
:
n1
≤
n2
→
▷^
n1
P
⊢
▷^
n2
P
.
Lemma
laterN_le
n1
n2
P
:
n1
≤
n2
→
▷^
n1
P
⊢
▷^
n2
P
.
Proof
.
induction
1
;
simpl
;
by
rewrite
-
?later_intro
.
Qed
.
Proof
.
induction
1
;
simpl
;
by
rewrite
-
?later_intro
.
Qed
.
...
@@ -2043,20 +2041,20 @@ Proof. apply (anti_symm (⊢)); auto using laterN_intro, True_intro. Qed.
...
@@ -2043,20 +2041,20 @@ Proof. apply (anti_symm (⊢)); auto using laterN_intro, True_intro. Qed.
Lemma
laterN_emp
`{
!
AffineBI
PROP
}
n
:
▷^
n
emp
⊣⊢
emp
.
Lemma
laterN_emp
`{
!
AffineBI
PROP
}
n
:
▷^
n
emp
⊣⊢
emp
.
Proof
.
by
rewrite
-
True_emp
laterN_True
.
Qed
.
Proof
.
by
rewrite
-
True_emp
laterN_True
.
Qed
.
Lemma
laterN_forall
{
A
}
n
(
Φ
:
A
→
PROP
)
:
(
▷^
n
∀
a
,
Φ
a
)
⊣⊢
(
∀
a
,
▷^
n
Φ
a
)
.
Lemma
laterN_forall
{
A
}
n
(
Φ
:
A
→
PROP
)
:
(
▷^
n
∀
a
,
Φ
a
)
⊣⊢
(
∀
a
,
▷^
n
Φ
a
)
.
Proof
.
induction
n
as
[|
n
IH
];
simpl
;
rewrite
-
?later_forall
;
auto
.
Qed
.
Proof
.
induction
n
as
[|
n
IH
];
simpl
;
rewrite
-
?later_forall
?IH
;
auto
.
Qed
.
Lemma
laterN_exist_2
{
A
}
n
(
Φ
:
A
→
PROP
)
:
(
∃
a
,
▷^
n
Φ
a
)
⊢
▷^
n
(
∃
a
,
Φ
a
)
.
Lemma
laterN_exist_2
{
A
}
n
(
Φ
:
A
→
PROP
)
:
(
∃
a
,
▷^
n
Φ
a
)
⊢
▷^
n
(
∃
a
,
Φ
a
)
.
Proof
.
apply
exist_elim
;
eauto
using
exist_intro
,
laterN_mono
.
Qed
.
Proof
.
apply
exist_elim
;
eauto
using
exist_intro
,
laterN_mono
.
Qed
.
Lemma
laterN_exist
`{
Inhabited
A
}
n
(
Φ
:
A
→
PROP
)
:
Lemma
laterN_exist
`{
Inhabited
A
}
n
(
Φ
:
A
→
PROP
)
:
(
▷^
n
∃
a
,
Φ
a
)
⊣⊢
∃
a
,
▷^
n
Φ
a
.
(
▷^
n
∃
a
,
Φ
a
)
⊣⊢
∃
a
,
▷^
n
Φ
a
.
Proof
.
induction
n
as
[|
n
IH
];
simpl
;
rewrite
-
?later_exist
;
auto
.
Qed
.
Proof
.
induction
n
as
[|
n
IH
];
simpl
;
rewrite
-
?later_exist
?IH
;
auto
.
Qed
.
Lemma
laterN_and
n
P
Q
:
▷^
n
(
P
∧
Q
)
⊣⊢
▷^
n
P
∧
▷^
n
Q
.
Lemma
laterN_and
n
P
Q
:
▷^
n
(
P
∧
Q
)
⊣⊢
▷^
n
P
∧
▷^
n
Q
.
Proof
.
induction
n
as
[|
n
IH
];
simpl
;
rewrite
-
?later_and
;
auto
.
Qed
.
Proof
.
induction
n
as
[|
n
IH
];
simpl
;
rewrite
-
?later_and
?IH
;
auto
.
Qed
.
Lemma
laterN_or
n
P
Q
:
▷^
n
(
P
∨
Q
)
⊣⊢
▷^
n
P
∨
▷^
n
Q
.
Lemma
laterN_or
n
P
Q
:
▷^
n
(
P
∨
Q
)
⊣⊢
▷^
n
P
∨
▷^
n
Q
.
Proof
.
induction
n
as
[|
n
IH
];
simpl
;
rewrite
-
?later_or
;
auto
.
Qed
.
Proof
.
induction
n
as
[|
n
IH
];
simpl
;
rewrite
-
?later_or
?IH
;
auto
.
Qed
.
Lemma
laterN_impl
n
P
Q
:
▷^
n
(
P
→
Q
)
⊢
▷^
n
P
→
▷^
n
Q
.
Lemma
laterN_impl
n
P
Q
:
▷^
n
(
P
→
Q
)
⊢
▷^
n
P
→
▷^
n
Q
.
Proof
.
apply
impl_intro_l
.
by
rewrite
-
laterN_and
impl_elim_r
.
Qed
.
Proof
.
apply
impl_intro_l
.
by
rewrite
-
laterN_and
impl_elim_r
.
Qed
.
Lemma
laterN_sep
n
P
Q
:
▷^
n
(
P
∗
Q
)
⊣⊢
▷^
n
P
∗
▷^
n
Q
.
Lemma
laterN_sep
n
P
Q
:
▷^
n
(
P
∗
Q
)
⊣⊢
▷^
n
P
∗
▷^
n
Q
.
Proof
.
induction
n
as
[|
n
IH
];
simpl
;
rewrite
-
?later_sep
;
auto
.
Qed
.
Proof
.
induction
n
as
[|
n
IH
];
simpl
;
rewrite
-
?later_sep
?IH
;
auto
.
Qed
.
Lemma
laterN_wand
n
P
Q
:
▷^
n
(
P
-∗
Q
)
⊢
▷^
n
P
-∗
▷^
n
Q
.
Lemma
laterN_wand
n
P
Q
:
▷^
n
(
P
-∗
Q
)
⊢
▷^
n
P
-∗
▷^
n
Q
.
Proof
.
apply
wand_intro_l
.
by
rewrite
-
laterN_sep
wand_elim_r
.
Qed
.
Proof
.
apply
wand_intro_l
.
by
rewrite
-
laterN_sep
wand_elim_r
.
Qed
.
Lemma
laterN_iff
n
P
Q
:
▷^
n
(
P
↔
Q
)
⊢
▷^
n
P
↔
▷^
n
Q
.
Lemma
laterN_iff
n
P
Q
:
▷^
n
(
P
↔
Q
)
⊢
▷^
n
P
↔
▷^
n
Q
.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment