Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
I
iris-coq
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Michael Sammler
iris-coq
Commits
bcce68db
Commit
bcce68db
authored
7 years ago
by
Ralf Jung
Browse files
Options
Downloads
Patches
Plain Diff
Stop iFrame from introducing modalities
Fixes #176
parent
458a6d45
No related branches found
No related tags found
No related merge requests found
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
theories/bi/lib/fixpoint.v
+1
-2
1 addition, 2 deletions
theories/bi/lib/fixpoint.v
theories/proofmode/frame_instances.v
+0
-8
0 additions, 8 deletions
theories/proofmode/frame_instances.v
theories/tests/proofmode.v
+2
-2
2 additions, 2 deletions
theories/tests/proofmode.v
with
3 additions
and
12 deletions
theories/bi/lib/fixpoint.v
+
1
−
2
View file @
bcce68db
...
@@ -85,8 +85,7 @@ Section greatest.
...
@@ -85,8 +85,7 @@ Section greatest.
F
(
bi_greatest_fixpoint
F
)
x
⊢
bi_greatest_fixpoint
F
x
.
F
(
bi_greatest_fixpoint
F
)
x
⊢
bi_greatest_fixpoint
F
x
.
Proof
.
Proof
.
iIntros
"HF"
.
iExists
(
CofeMor
(
F
(
bi_greatest_fixpoint
F
)))
.
iIntros
"HF"
.
iExists
(
CofeMor
(
F
(
bi_greatest_fixpoint
F
)))
.
(* FIXME: The framing here adds an <affine> modality that we have to introduce. *)
iSplit
;
last
done
.
iIntros
"!#"
(
y
)
"Hy"
.
iApply
(
bi_mono_pred
with
"[#] Hy"
)
.
iIntros
"{$HF} !# !#"
(
y
)
"Hy"
.
iApply
(
bi_mono_pred
with
"[#] Hy"
)
.
iIntros
"!#"
(
z
)
"?"
.
by
iApply
greatest_fixpoint_unfold_1
.
iIntros
"!#"
(
z
)
"?"
.
by
iApply
greatest_fixpoint_unfold_1
.
Qed
.
Qed
.
...
...
This diff is collapsed.
Click to expand it.
theories/proofmode/frame_instances.v
+
0
−
8
View file @
bcce68db
...
@@ -58,12 +58,8 @@ Global Instance make_sep_emp_r P : KnownRMakeSep P emp P.
...
@@ -58,12 +58,8 @@ Global Instance make_sep_emp_r P : KnownRMakeSep P emp P.
Proof
.
apply
right_id
,
_
.
Qed
.
Proof
.
apply
right_id
,
_
.
Qed
.
Global
Instance
make_sep_true_l
P
:
Absorbing
P
→
KnownLMakeSep
True
P
P
.
Global
Instance
make_sep_true_l
P
:
Absorbing
P
→
KnownLMakeSep
True
P
P
.
Proof
.
intros
.
apply
True_sep
,
_
.
Qed
.
Proof
.
intros
.
apply
True_sep
,
_
.
Qed
.
Global
Instance
make_and_emp_l_absorbingly
P
:
KnownLMakeSep
True
P
(
<
absorb
>
P
)
|
10
.
Proof
.
intros
.
by
rewrite
/
KnownLMakeSep
/
MakeSep
.
Qed
.
Global
Instance
make_sep_true_r
P
:
Absorbing
P
→
KnownRMakeSep
P
True
P
.
Global
Instance
make_sep_true_r
P
:
Absorbing
P
→
KnownRMakeSep
P
True
P
.
Proof
.
intros
.
by
rewrite
/
KnownRMakeSep
/
MakeSep
sep_True
.
Qed
.
Proof
.
intros
.
by
rewrite
/
KnownRMakeSep
/
MakeSep
sep_True
.
Qed
.
Global
Instance
make_and_emp_r_absorbingly
P
:
KnownRMakeSep
P
True
(
<
absorb
>
P
)
|
10
.
Proof
.
intros
.
by
rewrite
/
KnownRMakeSep
/
MakeSep
comm
.
Qed
.
Global
Instance
make_sep_default
P
Q
:
MakeSep
P
Q
(
P
∗
Q
)
|
100
.
Global
Instance
make_sep_default
P
Q
:
MakeSep
P
Q
(
P
∗
Q
)
|
100
.
Proof
.
by
rewrite
/
MakeSep
.
Qed
.
Proof
.
by
rewrite
/
MakeSep
.
Qed
.
...
@@ -101,12 +97,8 @@ Global Instance make_and_true_r P : KnownRMakeAnd P True P.
...
@@ -101,12 +97,8 @@ Global Instance make_and_true_r P : KnownRMakeAnd P True P.
Proof
.
by
rewrite
/
KnownRMakeAnd
/
MakeAnd
right_id
.
Qed
.
Proof
.
by
rewrite
/
KnownRMakeAnd
/
MakeAnd
right_id
.
Qed
.
Global
Instance
make_and_emp_l
P
:
Affine
P
→
KnownLMakeAnd
emp
P
P
.
Global
Instance
make_and_emp_l
P
:
Affine
P
→
KnownLMakeAnd
emp
P
P
.
Proof
.
intros
.
by
rewrite
/
KnownLMakeAnd
/
MakeAnd
emp_and
.
Qed
.
Proof
.
intros
.
by
rewrite
/
KnownLMakeAnd
/
MakeAnd
emp_and
.
Qed
.
Global
Instance
make_and_emp_l_affinely
P
:
KnownLMakeAnd
emp
P
(
<
affine
>
P
)
|
10
.
Proof
.
intros
.
by
rewrite
/
KnownLMakeAnd
/
MakeAnd
.
Qed
.
Global
Instance
make_and_emp_r
P
:
Affine
P
→
KnownRMakeAnd
P
emp
P
.
Global
Instance
make_and_emp_r
P
:
Affine
P
→
KnownRMakeAnd
P
emp
P
.
Proof
.
intros
.
by
rewrite
/
KnownRMakeAnd
/
MakeAnd
and_emp
.
Qed
.
Proof
.
intros
.
by
rewrite
/
KnownRMakeAnd
/
MakeAnd
and_emp
.
Qed
.
Global
Instance
make_and_emp_r_affinely
P
:
KnownRMakeAnd
P
emp
(
<
affine
>
P
)
|
10
.
Proof
.
intros
.
by
rewrite
/
KnownRMakeAnd
/
MakeAnd
comm
.
Qed
.
Global
Instance
make_and_default
P
Q
:
MakeAnd
P
Q
(
P
∧
Q
)
|
100
.
Global
Instance
make_and_default
P
Q
:
MakeAnd
P
Q
(
P
∧
Q
)
|
100
.
Proof
.
by
rewrite
/
MakeAnd
.
Qed
.
Proof
.
by
rewrite
/
MakeAnd
.
Qed
.
...
...
This diff is collapsed.
Click to expand it.
theories/tests/proofmode.v
+
2
−
2
View file @
bcce68db
...
@@ -57,7 +57,7 @@ Lemma test_iDestruct_and_emp P Q `{!Persistent P, !Persistent Q} :
...
@@ -57,7 +57,7 @@ Lemma test_iDestruct_and_emp P Q `{!Persistent P, !Persistent Q} :
Proof
.
iIntros
"[#? _] [_ #?]"
.
auto
.
Qed
.
Proof
.
iIntros
"[#? _] [_ #?]"
.
auto
.
Qed
.
Lemma
test_iIntros_persistent
P
Q
`{
!
Persistent
Q
}
:
(
P
→
Q
→
P
∧
Q
)
%
I
.
Lemma
test_iIntros_persistent
P
Q
`{
!
Persistent
Q
}
:
(
P
→
Q
→
P
∧
Q
)
%
I
.
Proof
.
iIntros
"H1 #H2"
.
by
iFrame
.
Qed
.
Proof
.
iIntros
"H1 #H2"
.
by
iFrame
"∗#"
.
Qed
.
Lemma
test_iIntros_pure
(
ψ
φ
:
Prop
)
P
:
ψ
→
(
⌜
φ
⌝
→
P
→
⌜
φ
∧
ψ
⌝
∧
P
)
%
I
.
Lemma
test_iIntros_pure
(
ψ
φ
:
Prop
)
P
:
ψ
→
(
⌜
φ
⌝
→
P
→
⌜
φ
∧
ψ
⌝
∧
P
)
%
I
.
Proof
.
iIntros
(??)
"H"
.
auto
.
Qed
.
Proof
.
iIntros
(??)
"H"
.
auto
.
Qed
.
...
@@ -374,7 +374,7 @@ Lemma test_assert_affine_pure (φ : Prop) P :
...
@@ -374,7 +374,7 @@ Lemma test_assert_affine_pure (φ : Prop) P :
Proof
.
iIntros
(
Hφ
)
.
iAssert
(
<
affine
>
⌜
φ
⌝
)
%
I
with
"[%]"
as
"$"
;
auto
.
Qed
.
Proof
.
iIntros
(
Hφ
)
.
iAssert
(
<
affine
>
⌜
φ
⌝
)
%
I
with
"[%]"
as
"$"
;
auto
.
Qed
.
Lemma
test_assert_pure
(
φ
:
Prop
)
P
:
Lemma
test_assert_pure
(
φ
:
Prop
)
P
:
φ
→
P
⊢
P
∗
⌜
φ
⌝.
φ
→
P
⊢
P
∗
⌜
φ
⌝.
Proof
.
iIntros
(
Hφ
)
.
iAssert
⌜
φ
⌝%
I
with
"[%]"
as
"$"
;
auto
.
Qed
.
Proof
.
iIntros
(
Hφ
)
.
iAssert
⌜
φ
⌝%
I
with
"[%]"
as
"$"
;
auto
with
iFrame
.
Qed
.
Lemma
test_iEval
x
y
:
⌜
(
y
+
x
)
%
nat
=
1
⌝
-∗
⌜
S
(
x
+
y
)
=
2
%
nat
⌝
:
PROP
.
Lemma
test_iEval
x
y
:
⌜
(
y
+
x
)
%
nat
=
1
⌝
-∗
⌜
S
(
x
+
y
)
=
2
%
nat
⌝
:
PROP
.
Proof
.
Proof
.
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment