Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
I
iris-coq
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Michael Sammler
iris-coq
Commits
91452d8a
Commit
91452d8a
authored
8 years ago
by
Robbert Krebbers
Browse files
Options
Downloads
Patches
Plain Diff
Mutual Banach's fixpoint.
parent
5dab83f7
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
algebra/ofe.v
+79
-0
79 additions, 0 deletions
algebra/ofe.v
with
79 additions
and
0 deletions
algebra/ofe.v
+
79
−
0
View file @
91452d8a
...
...
@@ -233,6 +233,85 @@ Section fixpoint.
Proof
.
setoid_rewrite
equiv_dist
;
naive_solver
eauto
using
fixpoint_ne
.
Qed
.
End
fixpoint
.
(** Mutual fixpoints *)
Section
fixpoint2
.
Context
`{
Cofe
A
,
Cofe
B
,
!
Inhabited
A
,
!
Inhabited
B
}
.
Context
(
fA
:
A
→
B
→
A
)
.
Context
(
fB
:
A
→
B
→
B
)
.
Context
`{
∀
n
,
Proper
(
dist_later
n
==>
dist
n
==>
dist
n
)
fA
}
.
Context
`{
∀
n
,
Proper
(
dist_later
n
==>
dist_later
n
==>
dist
n
)
fB
}
.
Local
Definition
fixpoint_AB
(
x
:
A
)
:
B
:=
fixpoint
(
fB
x
)
.
Local
Instance
fixpoint_AB_contractive
:
Contractive
fixpoint_AB
.
Proof
.
intros
n
x
x'
Hx
;
rewrite
/
fixpoint_AB
.
apply
fixpoint_ne
=>
y
.
by
f_contractive
.
Qed
.
Local
Definition
fixpoint_AA
(
x
:
A
)
:
A
:=
fA
x
(
fixpoint_AB
x
)
.
Local
Instance
fixpoint_AA_contractive
:
Contractive
fixpoint_AA
.
Proof
.
solve_contractive
.
Qed
.
Definition
fixpoint_A
:
A
:=
fixpoint
fixpoint_AA
.
Definition
fixpoint_B
:
B
:=
fixpoint_AB
fixpoint_A
.
Lemma
fixpoint_A_unfold
:
fA
fixpoint_A
fixpoint_B
≡
fixpoint_A
.
Proof
.
by
rewrite
{
2
}
/
fixpoint_A
(
fixpoint_unfold
_)
.
Qed
.
Lemma
fixpoint_B_unfold
:
fB
fixpoint_A
fixpoint_B
≡
fixpoint_B
.
Proof
.
by
rewrite
{
2
}
/
fixpoint_B
/
fixpoint_AB
(
fixpoint_unfold
_)
.
Qed
.
Instance
:
Proper
((
≡
)
==>
(
≡
)
==>
(
≡
))
fA
.
Proof
.
apply
ne_proper_2
=>
n
x
x'
?
y
y'
?
.
f_contractive
;
auto
using
dist_S
.
Qed
.
Instance
:
Proper
((
≡
)
==>
(
≡
)
==>
(
≡
))
fB
.
Proof
.
apply
ne_proper_2
=>
n
x
x'
?
y
y'
?
.
f_contractive
;
auto
using
dist_S
.
Qed
.
Lemma
fixpoint_A_unique
p
q
:
fA
p
q
≡
p
→
fB
p
q
≡
q
→
p
≡
fixpoint_A
.
Proof
.
intros
HfA
HfB
.
rewrite
-
HfA
.
apply
fixpoint_unique
.
rewrite
/
fixpoint_AA
.
f_equiv
=>
//.
apply
fixpoint_unique
.
by
rewrite
HfA
HfB
.
Qed
.
Lemma
fixpoint_B_unique
p
q
:
fA
p
q
≡
p
→
fB
p
q
≡
q
→
q
≡
fixpoint_B
.
Proof
.
intros
.
apply
fixpoint_unique
.
by
rewrite
-
fixpoint_A_unique
.
Qed
.
End
fixpoint2
.
Section
fixpoint2_ne
.
Context
`{
Cofe
A
,
Cofe
B
,
!
Inhabited
A
,
!
Inhabited
B
}
.
Context
(
fA
fA'
:
A
→
B
→
A
)
.
Context
(
fB
fB'
:
A
→
B
→
B
)
.
Context
`{
∀
n
,
Proper
(
dist_later
n
==>
dist
n
==>
dist
n
)
fA
}
.
Context
`{
∀
n
,
Proper
(
dist_later
n
==>
dist
n
==>
dist
n
)
fA'
}
.
Context
`{
∀
n
,
Proper
(
dist_later
n
==>
dist_later
n
==>
dist
n
)
fB
}
.
Context
`{
∀
n
,
Proper
(
dist_later
n
==>
dist_later
n
==>
dist
n
)
fB'
}
.
Lemma
fixpoint_A_ne
n
:
(
∀
x
y
,
fA
x
y
≡
{
n
}
≡
fA'
x
y
)
→
(
∀
x
y
,
fB
x
y
≡
{
n
}
≡
fB'
x
y
)
→
fixpoint_A
fA
fB
≡
{
n
}
≡
fixpoint_A
fA'
fB'
.
Proof
.
intros
HfA
HfB
.
apply
fixpoint_ne
=>
z
.
rewrite
/
fixpoint_AA
/
fixpoint_AB
HfA
.
f_equiv
.
by
apply
fixpoint_ne
.
Qed
.
Lemma
fixpoint_B_ne
n
:
(
∀
x
y
,
fA
x
y
≡
{
n
}
≡
fA'
x
y
)
→
(
∀
x
y
,
fB
x
y
≡
{
n
}
≡
fB'
x
y
)
→
fixpoint_B
fA
fB
≡
{
n
}
≡
fixpoint_B
fA'
fB'
.
Proof
.
intros
HfA
HfB
.
apply
fixpoint_ne
=>
z
.
rewrite
HfB
.
f_contractive
.
apply
fixpoint_A_ne
;
auto
using
dist_S
.
Qed
.
Lemma
fixpoint_A_proper
:
(
∀
x
y
,
fA
x
y
≡
fA'
x
y
)
→
(
∀
x
y
,
fB
x
y
≡
fB'
x
y
)
→
fixpoint_A
fA
fB
≡
fixpoint_A
fA'
fB'
.
Proof
.
setoid_rewrite
equiv_dist
;
naive_solver
eauto
using
fixpoint_A_ne
.
Qed
.
Lemma
fixpoint_B_proper
:
(
∀
x
y
,
fA
x
y
≡
fA'
x
y
)
→
(
∀
x
y
,
fB
x
y
≡
fB'
x
y
)
→
fixpoint_B
fA
fB
≡
fixpoint_B
fA'
fB'
.
Proof
.
setoid_rewrite
equiv_dist
;
naive_solver
eauto
using
fixpoint_B_ne
.
Qed
.
End
fixpoint2_ne
.
(** Function space *)
(* We make [ofe_fun] a definition so that we can register it as a canonical
structure. *)
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment